Answer:
Step-by-step explanation:
Given:
Area = 3x^3 - 16x^2 + 31x - 20
Base:
x^3 - 5x
Area of trapezoid, S = 1/2 × (A + B) × h
Using long division,
(2 × (3x^3 - 16x^2 + 31x - 20))/x^3 - 5x
= (6x^3 - 32x^2 + 62x - 40))/x^3 - 5x = 6 - (32x^2 - 92x + 40)/x^3 - 5x = 2S/Bh - Ah/Bh
= 2S/Bh - A/B
= (2S/B × 1/h) - A/B
Since, x^3 - 5x = B
Comparing the above,
A = 32x^2 - 92x + 40
2S/B = 6
Therefore, h = 1
SOS:
Answer:
Take the square root of 36 and subtract 2.
Step-by-step explanation:

<em>Hope this helps!!</em>
The equation represented by Ms. Wilson's model is n² + 13n + 40 = (n + 8)(n + 5)
<h3>How to determine the equation of the model?</h3>
The partially completed model is given as:
| n
| n²
5 | 5n | 40
By dividing the rows and columns, the complete model is:
| n | 8
n | n² | 8n
5 | 5n | 40
Add the cells, and multiply the leading row and columns
n² + 8n + 5n + 40 = (n + 8)(n + 5)
This gives
n² + 13n + 40 = (n + 8)(n + 5)
Hence, the equation represented by Ms. Wilson's model is n² + 13n + 40 = (n + 8)(n + 5)
Read more about polynomials at:
brainly.com/question/4142886
#SPJ4
Answer:
x = 5, x = 1
Step-by-step explanation:
The quadratic equation 0 = 4(x - 3)2 - 16.
Using binomial theorem, (a - b)2 = a2 - 2ab + b2 to expand (x - 3)2.
0 = 4(x2 - 6x + 9 ) - 16.
Using distributive property to multiply 4 by x2 - 6x + 9.
0 = 4x2 - 24x + 36 - 16.
Subtract 16 from 36 to get 20.
0 = 4x2 - 24x + 20.
4x2 - 24x + 20 = 0.
Divide both sides by 4.
x2 - 6x + 5 = 0.
To solve the equation, factor and rewrite as x2 + ax + bx + 5
a + b = -6, ab = 1(5) = 5.
a = -5, b = -1.
Rewriting x2 - 6x + 5 as
(x2 - 5x) + (-x + 5)
Factor x in the first and -1 in the second group.
x(x - 5) - (x - 5)
Factor out common term
(x - 5)(x - 1)
By solving the above, we get
x = 5, x = 1