Answer:
0.7
Explanation:
Using Hardy-Weinberg equation of genetic variation being constant when disturbing factors such has mutation and others are removed.
p² + pq + q² = 1 and p + q = 1
where p² is the frequency of the homozygous dominant genotype (RR) and q² is the frequency of the homozygous recessive genotype (rr) and 2pq is the frequency of heterozygous genotype (Rr). p represent the frequency of "R" and q represent "g". since the coefficient against the green/green homozygote is 0.30 then
the fitness of the green/green homozygote = 1 - 0.3 = 0.7
D. <span>The stomata will close until enough water is lost.</span>
Hope this helps
Answer:
C. The enzyme with mutation 1 has decreased affinity for pyridoxal phosphate, whereas the enzyme with mutation 2 has lost the ability to bind to the substrates.
Explanation:
A coenzyme is an organic cofactor that binds with an enzyme in order to initiate or aid the function of the enzyme. A coenzyme binds to the active site of the enzyme (where the reaction occurs), thereby triggering its activation by modifying protein structure during the reaction. Some examples of coenzymes include Coenzyme A and Adenosine triphosphate (ATP). Pyridoxal phosphate is a coenzyme (it is the active form of vitamin B6) that is required for the function of cystathionase. Moreover, cystathionase is an enzyme that enables cells the synthesis of cysteine from methionine (transsulfuration pathway). The binding of pyridoxal phosphate to the enzyme increases the binding affinity of the enzyme for the substrate, thereby influencing its activity. In this case, it is expected that mutation 1 reduces the binding affinity of the enzyme to the cofactor, and thereby the cofactor is required at a higher concentration to restore normal enzyme activity.
Answer: It is b multiple alleles
Explanation: Alleles determine your genes.