Answer:
A. ![\displaystyle \frac{1}{5}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B1%7D%7B5%7D)
Step-by-step explanation:
![\displaystyle \frac{6}{5} \div \frac{1}{5} = 6 \\ \\ OR \\ \\ \frac{6}{5} \div 6 = \frac{1}{5}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7B6%7D%7B5%7D%20%5Cdiv%20%5Cfrac%7B1%7D%7B5%7D%20%3D%206%20%5C%5C%20%5C%5C%20OR%20%5C%5C%20%5C%5C%20%5Cfrac%7B6%7D%7B5%7D%20%5Cdiv%206%20%3D%20%5Cfrac%7B1%7D%7B5%7D)
I am joyous to assist you anytime.
Answer:
Step-by-step explanation:
p^2-8p-9
factor out the trinomial
(p-9)(p+1)
Therefore, she's incorrect. Because (p-1)(p+9)=p^2-p+9p-9=p^2+8p-9 and that's different from p^2-8p-9.
Answer:
The family of possible values for
are:
![(-\infty, -4) \,\cup \,(7, +\infty)](https://tex.z-dn.net/?f=%28-%5Cinfty%2C%20-4%29%20%5C%2C%5Ccup%20%5C%2C%287%2C%20%2B%5Cinfty%29)
Step-by-step explanation:
By Linear Algebra, we can calculate the angle by definition of dot product:
(1)
Where:
- Angle between vectors, in sexagesimal degrees.
- Norms of vectors
and ![\vec{b}](https://tex.z-dn.net/?f=%5Cvec%7Bb%7D)
If
is acute, then the cosine function is bounded between 0 a 1 and if we know that
and
, then the possible values for
are:
Minimum (
)
![\frac{p^{2}-3\cdot p -28}{\sqrt{p^{2}+58}\cdot \sqrt{2\cdot p^{2}+16}} > 0](https://tex.z-dn.net/?f=%5Cfrac%7Bp%5E%7B2%7D-3%5Ccdot%20p%20-28%7D%7B%5Csqrt%7Bp%5E%7B2%7D%2B58%7D%5Ccdot%20%5Csqrt%7B2%5Ccdot%20p%5E%7B2%7D%2B16%7D%7D%20%3E%200)
Maximum (
)
![\frac{p^{2}-3\cdot p -28}{\sqrt{p^{2}+58}\cdot \sqrt{2\cdot p^{2}+16}} < 1](https://tex.z-dn.net/?f=%5Cfrac%7Bp%5E%7B2%7D-3%5Ccdot%20p%20-28%7D%7B%5Csqrt%7Bp%5E%7B2%7D%2B58%7D%5Ccdot%20%5Csqrt%7B2%5Ccdot%20p%5E%7B2%7D%2B16%7D%7D%20%3C%201)
With the help of a graphing tool we get the family of possible values for
are:
![(-\infty, -4) \,\cup \,(7, +\infty)](https://tex.z-dn.net/?f=%28-%5Cinfty%2C%20-4%29%20%5C%2C%5Ccup%20%5C%2C%287%2C%20%2B%5Cinfty%29)
Answer:
817 Cubic Centimeters
Step-by-step explanation:
The volume of a prism is just multiplying its length, width, and height.
.