Given expression is
![\sqrt[4]{\frac{16x^{11}y^8}{81x^7y^6}}](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E%7B11%7Dy%5E8%7D%7B81x%5E7y%5E6%7D%7D)
Radical is fourth root
first we simplify the terms inside the radical


So the expression becomes
![\sqrt[4]{\frac{16x^4y^2}{81}}](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B%5Cfrac%7B16x%5E4y%5E2%7D%7B81%7D%7D)
Now we take fourth root
![\sqrt[4]{16} = 2](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B16%7D%20%3D%202)
![\sqrt[4]{81} = 3](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B81%7D%20%3D%203)
![\sqrt[4]{x^4} = x](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E4%7D%20%3D%20x)
We cannot simplify fourth root (y^2)
After simplification , expression becomes
![\frac{2x\sqrt[4]{y^2}}{3}](https://tex.z-dn.net/?f=%5Cfrac%7B2x%5Csqrt%5B4%5D%7By%5E2%7D%7D%7B3%7D)
Answer is option B
Answer: a) The probability is approximately = 0.5793
b) The probability is approximately=0.8810
Step-by-step explanation:
Given : Mean : 
Standard deviation : 
a) The formula for z -score :

Sample size = 1
For x= 63 in. ,

The p-value = 

Thus, the probability is approximately = 0.5793
b) Sample size = 35
For x= 63 ,

The p-value = 

Thus , the probability is approximately=0.8810.
Answer:
Step-by-step explanation:
Z score is the number of standard devations above the mean.
For example if z=1, the data value is 1 st. dev. above the mean.
So, z=1.95, so the player's heigh is 1.95 st. dev. above the mean.
(+/-) <span>1 x (+/-) 232 = 232
</span>(+/-) <span>2 x (+/-)116 = 232
</span>(+/-) 4 x (+/-) <span>58 = 232
</span>(+/-) 8 x (+/-) <span>29 = 232
</span>(+/-) 29 x (+/-) <span>8 = 232
</span>(+/-) 58 x (+/-) <span>4 = 232
</span>(+/-) 116 x (+/-) <span>2 = 232
</span>(+/-) 232 x (+/-) 1 = 232