Sub to my youtube channel YaBoi El plsss
Answer:
The easiest way to identify a double displacement reaction is to check to see whether or not the cations exchanged anions with each other.
Explanation:
if the states of matter are cited, is to look for aqueous reactants and the formation of one solid product (since the reaction typically generates a precipitate).
<u>61.25 grams</u> of CO can be formed from 35 grams of oxygen.
The molecular mass of oxygen is <u>16 gmol⁻¹</u>
The molecular mass of carbon monoxide is<u> 28 gmol⁻¹</u>
Explanation:
The molar mass of carbon monoxide is molar mass of C added to that of O;
12 + 16 = 28
= 28g/mol
The molar mass of oxygen is 16 g/mol while that of oxygen gas (O₂) is 32 g/mol
Since the ration oxygen to carbon monoxide is 1: 2 moles, we begin to find out how many moles of carbon monoxide are formed by 35 g of oxygen;
35/32 * 2
= 70/32 moles
Then multiply by the molar mass of carbon monoxide;
70/32 * 28
= 61.25 g
The time the chocolate bar could power the laptop in hours is 0.00233 hrs.
Since 200 Calories of chocolate bar were burned to power the 100 Watt laptop, we need to find the number of joules on energy in 200 calories of chocolate bar.
Knowing that 4.2 Joules = 1 Calorie, then
200 Calories = 200 × 1 calorie = 200 × 4.2 Joules = 840 Joules
Since the power required by the laptop is 100 W = 100 J/s and Power, P = energy/time
so, time = energy/power
So, the time for the laptop to use 840 J of energy from the chocolate bar at a rate or power of 100 W = 100 J/s is
time = 840 J ÷ 100 J/s = 8.4 s
So, the time in hours is 8.4 s ÷ 3600 s/1 h = 0.00233 hrs (since 1 hr = 3600 s)
So, the time the chocolate bar could power the laptop in hours is 0.00233 hrs.
Learn more about time to power here:
brainly.com/question/17732603