Answer:
∴ The absolute pressure of the air in the balloon in kPa = 102.69 kPa.
Explanation:
- We can solve this problem using the general gas law:
<em>PV = nRT</em>, where,
P is the pressure of the gas <em>(atm)</em>,
V is the volume of the gas in L <em>(V of air = 6.23 L)</em>,
n is the no. of moles of gas <em>(n of air = 0.25 mole)</em>,
R is the general gas constant <em>(R = 0.082 L.atm/mol.K)</em>,
T is the temperature of gas in K <em>(T = 35 °C + 273 = 308 K</em>).
∴ P = nRT / V = (0.25 mole)(0.082 L.atm/mol.K)(308 K) / (6.23 L) = 1.0135 atm.
- <em>Now, we should convert the pressure from (atm) to (kPa).</em>
1.0 atm → 101.325 kPa,
1.0135 atm → ??? kPa.
∴ The absolute pressure of the air in the balloon in kPa = (101.325 kPa)(1.0135 atm) / (1.0 atm) = 102.69 kPa.
Answer:
Arrow.
Explanation:
Hello!
In this case, since chemical reactions are characterized by the presence of some species at the left on an arrow representing the reactants and at the right the products, we understand that the arrow, separating reactants and products is understood as "produces" or in very chemical words "yields"; therefore, the symbol that takes the place of the word yields is an arrow.
Best regards!
Answer:
That would be 86.944 Celsius
Explanation:
(188.5°F − 32) × 5/9 = 86.944°C