1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svetoff [14.1K]
3 years ago
11

Explain that power is dot product of force and velocity?​

Physics
2 answers:
katovenus [111]3 years ago
4 0

Answer:

Power is the rate of change of force dotted into displacement, added to the force dotted to the rate of change of displacement. ... Power is the rate of change of force dotted into displacement, added to the force dotted to the rate of change of displacement. Rate of change of displacement is velocity

Explanation:

Nataliya [291]3 years ago
3 0

Explanation:

Power is the rate of change of force dotted into displacement which is added to the force dotted to the rate of change of displacement.If the force is constant, then you get the instantaneous power is the force dotted to the instantaneous velocity.

You might be interested in
Trumpeter A holds a B-flat note on the trumpet for a long time. Person C is running towards the trumpeter at a constant velocity
Vikki [24]
You didn't mention it, but the trumpeter herself has to be standing still.

<span>Person C, the one running towards the trumpeter, hears a pitch
that is higher than B-flat.  (A)

Person B, the one running away from the trumpeter, hears a pitch
that is lower than B-flat.

Person D, the one standing still the whole time, hears the B-flat.</span>
5 0
3 years ago
Read 2 more answers
You purchase a ten-year 1,000 bond with semiannual coupons for 982. The bond has a 1,100 redemption payment at maturity, a nomin
vladimir2022 [97]

Answer:

ummmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

6 0
3 years ago
A particle makes 800 revolution in 4 minutes of a circle of 5cm. Find
vladimir1956 [14]

Answer:

i) The period of the particle is 0.3 seconds

ii) The angular velocity is approximately 20.94 rad/s

iii) The linear velocity is approximately 1.047 m/s

iv) The centripetal acceleration is approximately 6.98 m/s²

Explanation:

The given parameters are;

The number of revolution of the particle, n = 800 revolution

The time it takes the particle to make 800 revolutions = 4 minutes

The dimension of the circle = 5 cm = 0.05 m

Given that the dimension of the circle is the radius of the circle, we have;

i) The period of the particle, T = The time to complete one revolution

T = 1/(The number of revolutions per second)

∴ T = 1/(800 rev/(4 min × 60 s/min)) = 3/10 s

The period, T = 3/10 seconds = 0.3 seconds

ii) The angular velocity, ω = Angle covered/(Time)

800 revolutions in 4 minutes = Angle of (800 × 2·π) in 4 minutes

∴ ω = (800 × 2·π)/(4 × 60) = 20·π/3

The angular velocity, ω = 20·π/3 rad/s ≈ 20.94 rad/s

iii) The linear velocity, v = r × ω

∴ The linear velocity, v = 0.05 m × 20·π/3 rad/s = π/3 m/s ≈ 1.047 m/s

iv) The centripetal acceleration, a_c = v²/r

∴ The centripetal acceleration, a_c = (π/3)²/(0.05) = 20·π/9

The centripetal acceleration, a_c = 20·π/9 m/s² ≈ 6.98 m/s²

4 0
2 years ago
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
State two applications of electrostatic
kaheart [24]
Atmospheric electricity and storms, electrostatic control filters, and industrial electrostatic seperation as well as spark discharge. these are just a few. hope it helps. 
6 0
3 years ago
Other questions:
  • The parietal lobe is the portion of the cerebral cortex located below the temporal lobe.
    7·2 answers
  • Sound waves are actually a form of what kind of energy?
    11·2 answers
  • One who voluntarily donates tissues/ organs striped
    15·1 answer
  • What season is when the sun is least concentrated at the beginning of the season?
    12·2 answers
  • Which word in the sentence is a plural pronoun?
    11·2 answers
  • When happens when an object becomes positively charged?
    8·2 answers
  • 2 Physics Questions WILL GIVE BRAINLIEST!!
    13·1 answer
  • Two ice skaters stand facing each other at rest on a frozen pond. They push off against one another and the 48 kg skater acquire
    10·2 answers
  • An ice sled powered by a rocket engine starts from rest on a large frozen lake and accelerates at +35 ft/s2. After some time t1,
    11·1 answer
  • A student, starting from rest, slides down a water slide. On the way down, a kinetic frictional force (a nonconservative force)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!