1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SIZIF [17.4K]
4 years ago
10

A motorcycle accelerates uniformly from rest at 7.9\,\dfrac{\text{m}}{\text{s}^2}7.9 s 2 m ​ 7, point, 9, space, start fraction,

m, divided by, s, start superscript, 2, end superscript, end fraction. We want to find the time it takes the motorcycle to reach a speed of 100\,\dfrac{\text{km}}{\text{h}}100 h km ​ 100, space, start fraction, k, m, divided by, h, end fraction. Which kinematic formula would be most useful to solve for the target unknown?
Physics
1 answer:
8090 [49]4 years ago
6 0

Answer:

t = 3.516 s

Explanation:

The most useful kinematic formula would be the velocity of the motorcylce as a function of time, which is:

v(t) = v_0 +at

Where v_0 is the initial velocity and a is the acceleration. However the problem states that the motorcyle start at rest therefore v_0 = 0

If we want to know the time it takes to achieve that speed, we first need to convert units from km/h to m/s.

This can be done knowing that

1 km = 1000 m

1 h = 3600 s

Therefore

1 km/h = (1000/3600) m/s = 0.2777... m/s

100 km/h = 27.777... m/s

Now we are looking for the time t, for which v(t) = 27.77 m/s. That is:

27.777 m/s = 7.9 m/s^2 t

Solving for t

t = (27.7777 / 7.9) s = 3.516 s

You might be interested in
Mrs. Martin’s drive to school is 25 miles from her house. It takes her half an hour to get there. The speed limit is 40 mph. Was
oee [108]

Answer:

yessssssssssssssssssssssssssssss

7 0
3 years ago
What are convex mirrors used in?​
suter [353]

Answer:

kubsurti dekh ne me use hota hai

lol

XD....

7 0
3 years ago
Read 2 more answers
A 1 m3tank containing air at 10oC and 350 kPa is connected through a valve to another tank containing 3 kg of air at 35oC and 15
Sveta_85 [38]

Answer:

- the volume of the second tank is 1.77 m³

- the final equilibrium pressure of air is 221.88 kPa ≈ 222 kPa

Explanation:

Given that;

V_{A} = 1 m³

T_{A} = 10°C = 283 K

P_{A} = 350 kPa

m_{B} = 3 kg

T_{B} = 35°C = 308 K

P_{B} = 150 kPa

Now, lets apply the ideal gas equation;

P_{B} V_{B} = m_{B}RT_{B}

V_{B} = m_{B}RT_{B} / P_{B}

The gas constant of air R = 0.287 kPa⋅m³/kg⋅K

we substitute

V_{B} = ( 3 × 0.287 × 308) / 150

V_{B} = 265.188 / 150  

V_{B} = 1.77 m³

Therefore, the volume of the second tank is 1.77 m³

Also, m_{A} =  P_{A}V_{A} / RT_{A} = (350 × 1)/(0.287 × 283) = 350 / 81.221

m_{A}  = 4.309 kg

Total mass, m_{f} = m_{A} + m_{B} = 4.309 + 3 = 7.309 kg

Total volume V_{f} = V_{A} + V_{B}  = 1 + 1.77 = 2.77 m³

Now, from ideal gas equation;

P_{f} =  m_{f}RT_{f} / V_{f}

given that; final temperature T_{f} = 20°C = 293 K

we substitute

P_{f} =  ( 7.309 × 0.287 × 293)  / 2.77

P_{f} =  614.6211119 / 2.77

P_{f} =  221.88 kPa ≈ 222 kPa

Therefore, the final equilibrium pressure of air is 221.88 kPa ≈ 222 kPa

6 0
3 years ago
Why doesn't the moon move away from the earth
Aleks04 [339]
The earths gravitational pull keeps the moon orbiting around and from straying away from it and into the vast expanses of outer space.
4 0
4 years ago
A 26-cm-long wire with a linear density of 20 g/m passes across the open end of an 86-cm-long open-closed tube of air. If the wi
damaskus [11]

Answer: T = 472.71 N

Explanation: The wire vibrates thus making sound waves in the tube.

The frequency of sound wave on the string equals frequency of sound wave in the tube.

L= Length of wire = 26cm = 0.26m

u=linear density of wire = 20g/m = 0.02kg/m

Length of open close tube = 86cm = 0.86m

Sound waves in the tube are generated at the second vibrational mode, hence the relationship between the length of air and and wavelength is given as

L = 3λ/4

0.86 = 3λ/4

3λ = 4 * 0.86

3λ = 3.44

λ = 3.44/3 = 1.15m.

Speed of sound in the tube = 340 m/s

Hence to get frequency of sound, we use the formulae below.

v = fλ

340 = f * 1.15

f = 340/ 1.15

f = 295.65Hz.

f = 295.65 = frequency of sound wave in pipe = frequency of sound wave in string.

The string vibrated at it fundamental frequency hence the relationship the length of string and wavelength is given as

L = λ/2

0.26 = λ/2

λ = 0.52m

The speed of sound in string is given as v = fλ

Where λ = 0.52m f = 295.65 Hz

v = 295.65 * 0.52

v = 153.738 m/s.

The velocity of sound in the string is related to tension, linear density and tension is given below as

v = √(T/u)

153.738 = √T/ 0.02

By squaring both sides

153.738² = T / 0.02

T = 153.738² * 0.02

T = 23,635.372 * 0.02

T= 472.71 N

3 0
3 years ago
Other questions:
  • Determine the amount of work (in J) done on an ideal gas as it is heated in an enclosed, thermally isolated cylinder topped with
    5·1 answer
  • Which of the following is a practical example of gravity acting on an object?
    14·2 answers
  • A constant net torque is applied to a rotating object. Which of the following best describes the object's motion?
    8·1 answer
  • Blank is anything that has mass and takes up space.
    11·2 answers
  • Un hombre de pie puede ejercer la misma fuerza con sus piernas tanto en la tierra como en la luna. Sabemos que la masa del hombr
    10·1 answer
  • A rug sits in a sunny place on the floor for a long time. Kiara thinks that light from the sun can cause the rug's color to fade
    14·1 answer
  • Imagine an infinite earth with a hole dripped through it. You fall in and accelerate at g~10m/s/s. How long until you reach the
    12·1 answer
  • A car staring from rest accelerates at 12 m/s^2, what distance did it travel in 7 seconds? (Show work)
    13·1 answer
  • How is gravity "best" described?
    5·2 answers
  • Acodents canneer be presentes True or false​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!