I think it's electromagnetic
The launch speed of a horizontally launched projectile is 13.28 m/s.
<h3>
Time of motion of the projectile</h3>
The time of motion is calculated as follows;
t = √(2h / g)
where;
- h is height of the cliff
- g is acceleration due to gravity
t = √(2 x 19.3 / 9.8)
t = 1.98 s
<h3>Launch speed of the projectile</h3>
X = Vxt
Vx = X/t
Vx = (26.3)/(1.98)
Vx = 13.28 m/s
Thus, the launch speed of a horizontally launched projectile is 13.28 m/s.
Learn more about horizontal speed here: brainly.com/question/24949996
#SPJ1
I don’t have any of the problem I can get it to my computer for my work
The problem involves the conversion of potential energy to kinetic energy as the object falls from rest. Energy is conserved, so the equation used is:
PEi + KEi = PEf + KEf
Since the object is falling from rest, the initial kinetic energy is zero. Also, since the object hits the ground at its final position, the final potential energy is zero. This leaves:
PEi = KEf
mgh = 1/2 mv^2
*cancel out mass on both sides of the equation
gh = 0.5v^2
v = sqrt(2gh) = sqrt(2*9.81*4.5) = 9.40 m/s --> final ans.