Answer:
The length of BC is needed because it is the side opposite ∠A.
Step-by-step explanation:
Given the right angles triangle as shown in the attachment, we can get sin(A) without using Pythagoras theorem. Instead we will use SOH CAH TOA trigonometry identity.
According to SOH:
Sin(A) = Opposite/Hypotenuse
Sin(A) = |BC|/|AB|
Opposite side of the triangle is the side facing ∠A.
Based on the formula, we will need to get the opposite side of the triangle which is length BC for us to be able to determine sinA since the hypotenuse is given.
Answer:
a. attached graph; zero real: 2
b. p(x) = (x - 2)(x + 3 + 3i)(x + 3 - 3i)
c. the solutions are 2, -3-3i and -3+3i
Step-by-step explanation:
p(x) = x³ + 4x² + 6x - 36
a. Through the graph, we can see that 2 is a real zero of the polynomial p. We can also use the Rational Roots Test.
p(2) = 2³ + 4.2² + 6.2 - 36 = 8 + 16 + 12 - 36 = 0
b. Now, we can use Briott-Ruffini to find the other roots and write p as a product of linear factors.
2 | 1 4 6 -36
1 6 18 0
x² + 6x + 18 = 0
Δ = 6² - 4.1.18 = 36 - 72 = -36 = 36i²
√Δ = 6i
x = -6±6i/2 = 2(-3±3i)/2
x' = -3-3i
x" = -3+3i
p(x) = (x - 2)(x + 3 + 3i)(x + 3 - 3i)
c. the solutions are 2, -3-3i and -3+3i
I believe the answer is D.
Answer:
b
Step-by-step explanation:
Answer:
110 members of a sports club play atleast one of the games, football, basketball and volleyball. If 20 play football and basketball only, 15 play football and volleyball only, 26 play basketball and volleyball only, x play all the three games, 2x each play
math
Of 45 students 30 play badminton and 26 play tennis. Each student play either badminton or tennis,determine how many students play:(a)badminton only (b) tennis only
probability and statistics
At a particular school with 200 male students, 58-play football, 40-play basketball, and 8 play both. What is the probability that a randomly selected male student plays a) At least one sport b) Neither sport c) Only basketball