So potassium is more reactive than lithium because the outer electron of a potassium atom is further from its nucleus than the outer electron of a lithium atom. Hope this answers the question. Have a nice day. Feel free to ask more questions.
Answer:
2KBr + MgF₂ –> 2KF + MgBr₂
The coefficients are: 2, 1, 2, 1
Explanation:
KBr + MgF₂ –> KF + MgBr₂
The above equation can be balance as illustrated below:
KBr + MgF₂ –> KF + MgBr₂
There are 2 atoms of F on the left side and 1 atom on the right. It can be balance by writing 2 before KF as shown below:
KBr + MgF₂ –> 2KF + MgBr₂
There 2 atoms of K on the right side and 1 atom on the left side. It can be balance by writing 2 before KBr as shown below:
2KBr + MgF₂ –> 2KF + MgBr₂
Now, the equation is balanced.
The coefficients are: 2, 1, 2, 1
Answer: 127.5ml
Explanation:
To calculate the volume of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is KOH.
We are given:

Putting values in above equation, we get:

Thus 127.5 ml of 0.5M of HNO3 would be needed to react with 85ml of 0.75M of KOH
Answer is: pH of solution is 5,17.
Kb(NH₃) = 1,8·10⁻⁵.
c(NH₄Cl) = 0,084 M = 0,084 mol/L.
Chemical reaction: NH₄⁺ + H₂O → NH₃ + H₃O⁺.
Ka · Kb = 10⁻¹⁴.
Ka(NH₄⁺) = 10⁻¹⁴ ÷ 1,8·10⁻⁵.
Ka(NH₄⁺) = 5,55·10⁻¹⁰.
[H₃O⁺] = [NH₃] = x.
Ka(NH₄⁺) = [H₃O⁺] · [NH₃] ÷ [NH₄⁺].
5,55·10⁻¹⁰ = x² ÷ (0,084 M - x).
Solve quadratic equation: x = [H₃O⁺] = 6,8·10⁻⁶ M.
pH = -log[H₃O⁺].
pH = -log(6,8·10⁻⁶ M) = 5,17.