Answer:
The sum of the squares of two numbers whose difference of the squares of the numbers is 5 and the product of the numbers is 6 is <u>169</u>
Step-by-step explanation:
Given : the difference of the squares of the numbers is 5 and the product of the numbers is 6.
We have to find the sum of the squares of two numbers whose difference and product is given using given identity,
Since, given the difference of the squares of the numbers is 5 that is
And the product of the numbers is 6 that is
Using identity, we have,
Substitute, we have,
Simplify, we have,
Thus, the sum of the squares of two numbers whose difference of the squares of the numbers is 5 and the product of the numbers is 6 is 169
The ans should be ASA because angle AVR is equal to angle EVN (opposite angles equal)
<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>1</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em>
<em>G</em><em>ood</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
<em>~</em><em>p</em><em>r</em><em>a</em><em>g</em><em>y</em><em>a</em>
Answer:
Relation 1 : Not a function
R2 : Function
R3: Function
R4: Not a function