Answer:
a hypothesis has no specific evidence of being true
<u> Y y</u> The Answer is 25%. Sorry About the punnett Square, it's all i
could do.
<u>Y</u> Y Y
<u>y</u> Y y
Answer: Although both are X-linked recessive conditions, and therefore more likely in males, with the single X-chromosome. The recessive allele in colour blindness occurs at a higher frequency in the population and is a mild condition. Thus colour blindness does occur to a lesser extent in females because it needs the double recessive condition. DMD is a severe, disabling condition with a limited lifespan, and recessive allele frequency much lower, so the double recessive condition in females is very rare.
Explanation: DMD is an X-linked recessive, “nearly always in males” suggest that it also occurs due to a new mutation or some rare condition e.g. double recessive from an affected father and carrier mother, or inactivation of the normal gene in a heterozygote. It is also found that the defective allele is not completely recessive and that female carriers may exhibit mild to moderate effects.
colour blindness is polygenic, although the genes are all X-linked. It is more common in males than females. Females can carry two recessive alleles and so express the phenotype, but this is uncommon because the frequency of the recessive gene is low.
There are similarities in that both are X-linked recessives, therefore commonly expressed in males, who only have one X chromosome. The gene frequency of the colour blindness recessive is much higher than that of DMD, so the double recessive condition, which affects females, is more likely to be seen with colour blindness. In addition, DMD is a severe condition associated with disability and limited lifespan, which reduces the probability of mating between an affected male and carrier female
<span>Organisms that can produce their own nutrients are called autotrophs, while the organisms that cannot produce their own food are called heterotrophs. Heterotrophs obtain the materials from the food they eat while autotrophs make their own nutrients. Hope this answers the question.</span>