Answer:
Hello! answer: x = 60
Step-by-step explanation:
This is a complementary angle so it will add up to 90 degrees! here is a demonstration picture for how I solved it! Hope that helps!
Answer:
Leg side along the wall = x ft = 8 ft
The other leg side = 7+x ft = 7+8=15 ft
The Hypotenuse =9+x ft = 9+8 = 17 ft
Step-by-step explanation:
In the question, the shape of the pool is right triangle.
Let the leg side along the wall to be the x ft
Let the other leg side to be 7+x ft
Let the longest side/hypotenuse to be x+9 ft
Apply the Pythagorean relationship where the sum of squares of the legs equals the square of the hypotenuse
This means;

Expand the terms in brackets

collect like terms

solve for x in the quadratic equation by factorization

Taking the positive value of x;
x=8ft
Finding the lengths
Leg side along the wall = x ft = 8 ft
The other leg side = 7+x ft = 7+8=15 ft
The Hypotenuse =9+x ft = 9+8 = 17 ft
Answer:
a. 2^(x-2) = g^(-1)(x)
b. A, B, D
Step-by-step explanation:
the phrasing attached in the image is flagged as inappropriate, so i will be replacing it with g(x) and its inverse with g^(-1)(x)
1. replace g(x) with y and solve for x
y = log₂(x) + 2
subtract 2 from both sides to isolate the x and its log
y - 2 = log₂(x)
this text is replaced by the second image -- it was marked as inappropriate
thus, 2^(y-2) = x
replace x with g^(-1)(x) and y with x
2^(x-2) = g^(-1)(x)
2. plug this in to points A, B, C, D, E, and F
A: (2,1)
plug 2 in for x
2^(2-2) = 2⁰ = 1 so this works
B: (4, 4)
2^(4-2) = 2²= 4 so this works
C: (9, 3)
2^(9-2) = 2⁷ = 128 ≠ 3 so this doesn't work
(5, 8)
2^(5-2) = 2³ = 8 so this works
E: (3, 5)
2^(3-2) = 2¹ = 2 ≠ 5 so this doesn't work
F: (8, 5)
2^(8-2) = 2⁶ = 64 ≠ 5 so this doesn't work