Answer:
9v-18
Step-by-step explanation:
.........................................
Part A) Find BC, the distance from Tower 2 to the plane, to the nearest foot.
in the triangle ACD
sin16=CD/(7600+BD)--------> CD=sin16*(7600+BD)---------> equation 1
in the triangle BCD
sin24=CD/BD-----------> CD=sin24*BD---------------> equation 2
equation 1=equation 2
sin16*(7600+BD)=sin24*BD-----> sin16*7600+sin16*BD=sin24*BD
sin24*BD-sin16*BD=sin16*7600----> BD=[sin16*7600]/[sin24-sin16]
BD=15979 ft
in the triangle BCD
cos24=BD/BC---------> BC=BD/cos24-------> 15979/cos24-------> 17491
BC=17491 ft
the answer part 1) BC is 17491 ft
Part 2) Find CD, the height of the plane from the ground, to the nearest foot.
CD=sin24*BD ( remember equation 2)
BD=15979 ft
CD=sin24*15979 -----------> CD=6499 ft
the answer part 2) CD is 6499 ft
Answer:
3a. 8t + 12c = 72
3b. t + c = 7
Step-by-step explanation:
number of tapes is t
number of Cds is c
so 8t + 12c = 72
and t + c = 7
so t = 7 - c
replace t = 7 - c in to the first equation
8(7 - c) + 12c = 72
56 - 8c + 12c = 72
4c = 72 - 56 = 16
c = 4
if c = 4, then t = 7 - c = 7 - 4 = 3