Answer:
The probability that none of the meals will exceed the cost covered by your company is 0.2637.
Step-by-step explanation:
A hyper-geometric distribution is used to define the probability distribution of <em>k</em> success in <em>n</em> samples drawn from a population of size <em>N</em> which include <em>K</em> success. Every draw is either a success of failure.
The random variable <em>X</em> = number of meals that will exceed the cost covered by the company.
The random variable <em>X</em> follows a hyper-geometric distribution.
The information provided is:
N = 15
K = 3
n = 5
k = 0
The probability mass function of a hyper-geometric distribution is:

Compute the probability that none of the meals will exceed the cost covered by your company as follows:

Thus, the probability that none of the meals will exceed the cost covered by your company is 0.2637.
Answers
b = 2.77 m
A = 43.0°
C = 111.1°
cosine law to find b

b = 2.7708\ m
Find angle A with sine law
![\displaystyle \frac{\sin A}{a} = \frac{\sin B}{b} \\ \\ \sin A = \frac{a \sin B}{b} \\ \\ A = \sin^{-1} \left[ \frac{a \sin B}{b} \right] \\ \\ A = \sin^{-1} \left[ \frac{4.33 \sin 25.9}{2.7708} \right] \\ \\ A = 43.0467020](https://tex.z-dn.net/?f=%5Cdisplaystyle%0A%5Cfrac%7B%5Csin%20A%7D%7Ba%7D%20%3D%20%5Cfrac%7B%5Csin%20B%7D%7Bb%7D%20%5C%5C%20%5C%5C%0A%5Csin%20A%20%3D%20%5Cfrac%7Ba%20%5Csin%20B%7D%7Bb%7D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7Ba%20%5Csin%20B%7D%7Bb%7D%20%20%5Cright%5D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B4.33%20%5Csin%2025.9%7D%7B2.7708%7D%20%20%5Cright%5D%20%20%5C%5C%20%5C%5C%0AA%20%3D%2043.0467020)
Find C with angles in triangle sum to 180
A + B + C = 180
C = 180 - A - B
C = 180 - 43.0467020 - 25.9
C = 111.1
Answer:
20
Step-by-step explanation:
nPr = n!/(n-r)!
5P2 = 5!/(5-2)!
= 5!/3!
= 5×4×3!/3!
= 5×4
= 20