Answer:
2,058
Step-by-step explanation:
first term : a_1 = 6
common ratio r = 7
a_n = (a_1) * r ^(n-1)
a_4 = 6 * 7^(4-1)
a_4 = 6 *7^3
a_4 = 6 * 343 = 2,058
Answer:

Step-by-step explanation:
To find x₁ and x₂ :
![\left[\begin{array}{ccc}-4&1\\5&4\\\end{array}\right] \times \left[\begin{array}{ccc}x_1\\x_2\\\end{array}\right] + \left[\begin{array}{ccc}11\\-19\\\end{array}\right] = \left[\begin{array}{ccc}-11\\40\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%261%5C%5C5%264%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_1%5C%5Cx_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%5C%5C-19%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-11%5C%5C40%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step 1
Multiply first 2 x 2 matrix with 2 x 1 vector, we get
![\left[\begin{array}{ccc}-4x_1&+ x_2\\5x_1&+ 4x_2\\\end{array}\right] + \left[\begin{array}{ccc}11\\-19\\\end{array}\right] = \left[\begin{array}{ccc}-11\\40\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4x_1%26%2B%20%20x_2%5C%5C5x_1%26%2B%20%204x_2%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D11%5C%5C-19%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-11%5C%5C40%5Cend%7Barray%7D%5Cright%5D)
Step 2
Add the 2 x 1 matrices on LHS, we get
![\left[\begin{array}{ccc}-4x_1&+x_2&+11\\5x_1&+4x_2&-19\\\end{array}\right] = \left[\begin{array}{ccc}-11\\40\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4x_1%26%2Bx_2%26%2B11%5C%5C5x_1%26%2B4x_2%26-19%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-11%5C%5C40%5Cend%7Barray%7D%5Cright%5D)
Step 3,
we get

and

Step 4,
Simplify, we get

Step 5,
multiply eqn(1) by 4
we get

Step 6,
eqn (2) - eqn(3)
we get

substituting in eqn (1), we get

so, we get

Therefore

Answer:
You first start by making your equation: 45 +.25x = 70 +.15x. then subtract .15x from both sides. it should look like 45 +.10x = 70. subtract 45 from both sides then you get .10x = 25. divide 10 to both sides and you get 250. so the two companies will be the same at 250 texts.
Step-by-step explanation:
Because the order doesn't matter on where each person sits use the combinations formula:
C = n! / (r!(n-r)!)
Where n is the total number of people and r is the number of chairs.
C = 6! / (4!(6-4)!)
C = (6*5*4*3*2*1) / ((4*3*2*1(2*1))
C = 720 / (24*2)
C = 720 / 48
C = 15
There are 15 different arrangements.