Answer:
The cause of phytoplankton blooms has traditionally been attributed to seasonal changes in ‘bottom-up’ environmental factors controlling phytoplankton division rates, such as nutrients and light 3,4,5,6,7. However, seasonal changes in phytoplankton biomass (P) represented by the biomass-specific net rate of change (r) always reflect the interplay between two dominant terms, the phytoplankton division rate (μ) and the sum of all loss (l) rates (e.g., grazing, viruses, sinking):
Explanation:
The photosynthetic production of organic carbon by marine phytoplankton plays a key role in regulating atmospheric carbon dioxide (CO2) levels, such that without this biological uptake it is estimated that present day atmospheric CO2 concentrations would be 200 ppm (50%) higher1. Phytoplankton blooms in the temperate and polar oceans play a disproportionally large role in ocean CO2 uptake, as well as being critical ecological events to which the migration patterns of marine animals, ranging from zooplankton to whales, have evolved2. The cause of phytoplankton blooms has traditionally been attributed to seasonal changes in ‘bottom-up’ environmental factors controlling phytoplankton division rates, such as nutrients and light3,4,5,6,7. However, seasonal changes in phytoplankton biomass (P) represented by the biomass-specific net rate of change (r) always reflect the interplay between two dominant terms, the phytoplankton division rate (μ) and the sum of all loss (l) rates (e.g., grazing, viruses, sinking):
r=1PdPdt=μ−
Hope this helps
The answer would be lipids, they are a type of biomolecule and a nucle is an organelle
If a scientist observes an enzyme polypeptide chain arranged in spiral turns that rise upward and are held in place by hydrogen bonds he/she is looking at a tertiary structural arrangement.
Explanation:
The phenotypes and genotypes of the progeny can be determined by a dihybrid cross of the parents.
The heterozygous male will have the genotype 'SSww' and the heterozygous female will have the genotype 'ssWW'.
When crossed, the F1 offsprings will have a hybrid genotype of 'SsWw'. These offsprings are heterozygous with spotted skin and wooly hair.
On self-crossing of the F1 hybrids, we find four different combinations of the alleles- SW, Sw, SW and sw. The probability of getting each of these combinations is 1/4.
Hence, the probability of any dihybrid type is 1 out of the 16 possible genotypes. Using Punnet square, we find
9 SSWW: 3 SSww: 3 ssWW : 1 ssww
This is the phenotypic ratio of the offsprings.
The ratio of the possible genotypes will be 1:2:1:2:4:2:1:2:1.
Gonadotropin releasing hormones causes the ovaries and testes to greatly increase their production of estradiol and testosterone.
Gonadotropin releasing hormone is a hormone is released from nerve cells in the brain or produced in hypothalamus and transported to the pituitary gland through the blood stream. These hormones are very important in fertility.