We can write the balanced equation for the synthesis reaction as
H2(g) + Cl2(g) → 2HCl(g)
We use the molar masses of hydrogen chloride gas HCl and hydrogen gas H2 to calculate for the mass of hydrogen gas H2 needed:
mass of H2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol H2 / 2 mol HCl) *
(2.02 g H2 / 1 mol H2)
= 4.056 g H2
We also use the molar masses of hydrogen chloride gas HCl and chlorine gas CL2 to calculate for the mass of hydrogen gas H2:
mass of CL2 = 146.4 g HCl *(1 mol HCl / 36.46 g HCl) * (1 mol Cl2 / 2 mol HCl) *
(70.91 g Cl2 / 1 mol Cl2)
= 142.4 g Cl2
Therefore, we need 4.056 grams of hydrogen gas and 142.4 grams of chlorine gas to produce 146.4 grams of hydrogen chloride gas.
Answer:
Zn(s) → Zn⁺²(aq) + 2e⁻
Explanation:
Let us consider the complete redox reaction:
Zn(s) + 2HCl(aq) → ZnCl₂(aq) + H₂(g)
This is a redox reaction because, both oxidation and reduction is simultaneously taking place.
- Oxidation (loss of electrons or increase in the oxidation state of entity)
- Reduction (gain of electrons or decrease in the oxidation state of the entity)
- An element undergoes oxidation or reduction in order to achieve a stable configuration. It can be an octet configuration. An octet configuration is that of outer shell configuration of noble gas.
Here Zn(s) is undergoing oxidation from OS 0 to +2
And H in HCl (aq) is undergoing reduction from OS +1 to 0.
Therefore, for this reaction;
Oxidation Half equation is:
Zn(s) → Zn⁺²(aq) + 2e⁻
Reduction Half equation is:
2H⁺ + 2e⁻ → H₂(g)
This change in pressure is caused by changes in air density, and air density is related to temperature.
Answer:
They are 1.204×10^24 atoms of hydrogen present in 18 grams of water. In order to calculate this,it is necessary to compute the number of hydrogen moles present in the sample.