A molecule consisting of 100 amino acids has a molar mass
of 10,000 amu. The answer is letter A.
The role of the enzyme is to speed up biochemical
reactions. The answer is letter A. it does not take part in the reaction.
First, we should get moles acetic acid = molarity * volume
=0.3 M * 0.5 L
= 0.15 mol
then, we should get moles acetate = molarity * volume
= 0.2 M * 0.5L
= 0.1 mol
then, we have to get moles of OH- which added:
moles OH- = molarity * volume
= 1 M * 0.02L
= 0.02 mol
when the reaction equation is:
CH3COOH + OH- → CH3COO- + H2O
moles acetic acid after adding OH- = (0.15-0.02)
= 0.13M
moles acetate after adding OH- = (0.1 + 0.02)
= 0.12 M
Total volume = 0.5 L + 0.02 L= 0.52 L
∴[acetic acid] = moles acetic acid after adding OH- / total volume
= 0.13mol / 0.52L
= 0.25 M
and [acetate ) = 0.12 mol / 0.52L
= 0.23 M
by using H-H equation we can get PH:
PH = Pka + ㏒[salt/acid]
when we have Ka = 1.8 x 10^-5
∴Pka = -㏒Ka
= -㏒ 1.8 x 10^-5
= 4.7
So by substitution:
∴ PH = 4.7 + ㏒[acetate/acetic acid]
= 4.7 + ㏒(0.23/0.25)
= 4.66
One thing incorrect is that when dealing with a compound, such as H2SO4, that has 7 atoms in the chemical formula, the polyatomic ion SO4 doesn’t dissociate into one Sulfur and four Oxygens. SO4 stays and a PAI.
The component that runs the circuit is C the wire