Answer:
Solution given:
<u>A.coordinate are</u>
A(-2,3)
B(0,-3)
C(4,5)
<u>B</u><u>.</u><u>Each</u><u> </u><u>length</u><u> </u><u>are</u><u> </u><u>:</u>
we have
length 
now
AB:
=
units
BC:
=
units
AC:
=
units
<u>C.</u><u> the </u><u>figure</u><u>:</u>
<u>By</u><u> </u><u>using</u><u> </u><u>Pythagoras</u><u> </u><u>law</u>
base[b]=AB=perpendicular [p]=AC
hypotenuse [h]=BC
we have
h²=p²+b²
substituting value
(
)²=2p²
16*5=2*(
)²
80=2*4*10
80=80
<u>SO</u><u> </u><u>IT</u><u> </u><u>IS</u><u> </u><u>RIGHT</u><u> </u><u>ANGLED</u><u> </u><u>ISOSCELES</u><u> </u><u>TRIANGLE</u><u>.</u>
Consider this option/solution.
P.S. The method of solution is Gauss' method.
Answer:
domain={0,3}
range={1,9}
Step-by-step explanation:
Answer:
1/6
Explain:
The reciprocal of the slope is its perpendicular.
6/1 --> 1/6
Given:
Vertices of JKLM are J(−3,−2), K(−5,−5), L(1,−5), and M(3,−2).
To find:
The perimeter P of a parallelogram JKLM.
Solution:
Distance formula:

Using distance formula, we get





Similarly,



Now, perimeter P of ▱JKLM is







Therefore, the perimeter P of ▱JKLM is 19.2 units.