The decimal approximation for the trigonometric function sin 28°48' is
Given the trigonometric function is sin 28°48'
The ratio between the adjacent side and the hypotenuse is called cos(θ), whereas the ratio between the opposite side and the hypotenuse is called sin(θ). The sin(θ) and cos(θ) values for a given triangle are constant regardless of the triangle's size.
To solve this, we are going to convert 28°48' into degrees first, using the conversion factor 1' = 1/60°
sin (28°48') = sin(28° ₊ (48 × 1/60)°)
= sin(28° ₊ (48 /60)°)
= sin(28° ₊ 4°/5)
= sin(28° ₊ 0.8°)
= sin(28.8°)
= 0.481753
Therefore sin (28°48') is 0.481753.
Learn more about Trigonometric functions here:
brainly.com/question/25618616
#SPJ9
Answer:
Find annual profit: $75,000/6 = $12,500
ROI = Annual Profit/ initial investment
ROI = $12,500/$15,000 or 83.3%
hope that help
Answer:
n ≤ 5
Step-by-step explanation:
First, we add 14 to both sides. This gets us 5n ≤ 25. Next, we divide both sides by 5. This gets us n ≤ 5. I hope this helps!
<h3>
Answers:</h3>

================================================
Work Shown:
Part 1

Notice how I replaced every x with g(x) in step 2. Then I plugged in g(x) = x^2+6 and simplified.
------------------
Part 2

In step 4, I used the rule (a+b)^2 = a^2+2ab+b^2
In this case, a = sqrt(x-1) and b = 5.
You could also use the box method as a visual way to expand out 
You are dividing to find the answer