Answer:
![15 \sqrt[3]{2}](https://tex.z-dn.net/?f=15%20%5Csqrt%5B3%5D%7B2%7D%20)
Step-by-step explanation:
![{(27 \times 250)}^{ \frac{1}{3} } = {(27 \times 125 \times 2)}^{ \frac{1}{3} } \\ = {27}^{ \frac{1}{3} } \times {125}^{ \frac{1}{3} } \times {2}^{ \frac{1}{3} } \\ = \sqrt[ 3]{27} \times \sqrt[3]{125} \times \sqrt[3]{2} \\ = \sqrt[3]{ {3}^{3} } \times \sqrt[3]{ {5}^{3} } \times \sqrt[3]{2} \\ = 3 \times 5 \times \sqrt[3]{2} \\ = 15 \sqrt[3]{2}](https://tex.z-dn.net/?f=%20%7B%2827%20%5Ctimes%20250%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%7B%2827%20%5Ctimes%20125%20%5Ctimes%202%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B27%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B125%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B%203%5D%7B27%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B125%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%20%7B5%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%203%20%5Ctimes%205%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%2015%20%5Csqrt%5B3%5D%7B2%7D%20)
There exist a similar question where b = 68 instead of 6. First, determine the measure of the third angle, angle C,
m∠c = 180 - (55° + 44°) = 81°
Let x be the side AB, that which is opposite to angle C. Through the Sine Law,
68 / sin 44° = x / sin 81°
From the equation, the value of x is equal to 96.68. Thus, the answer is letter B.
Just do 45x0.2 then take that number off of $45 thats your answer
Alternate exterior angles are the pair of angles that lie on the outer side of the two parallel lines but on either side of the transversal line. Illustration: ... Notice how the pairs of alternating exterior angles lie on opposite sides of the transversal but outside the two parallel lines.
Convert to a mixed number:
239/42
Divide 239 by 42:
4 | 2 | 2 | 3 | 9
42 goes into 239 at most 5 times:
| | | | 5
4 | 2 | 2 | 3 | 9
| - | 2 | 1 | 0
| | | 2 | 9
Read off the results. The quotient is the number at the top and the remainder is the number at the bottom:
| | | | 5 | (quotient)
4 | 2 | 2 | 3 | 9 |
| - | 2 | 1 | 0 |
| | | 2 | 9 | (remainder)
The quotient of 239/42 is 5 with remainder 29, so:
Answer: 5 29/42