Answer:
8 hours
Step-by-step explanation:
Its is on the chart and is at the top
Answer:
20
Step-by-step explanation:
360÷18=20
thus ,the polygon have 20 sides
Answer:
14
Divide
12 and 1 over 412
1
4
÷ 7 over 8
7
8
= 392 over 28
392
28
Step 1 of 2: Divide, sub-step a: Convert mixed number to improper fraction.
Convert mixed number to improper fraction
12 and 1 over 412
1
4
= ( 12 × 4 ) over 4
12 × 4
4
+ 1 over 4
1
4
= ( 48 + 1 ) over 4
48 + 1
4
= 49 over 4
49
4
Step 1 of 2: Divide, sub-step b: Divide.
Divide
49 over 4
49
4
÷ 7 over 8
7
8
= 49 over 4
49
4
× 8 over 7
8
7
= ( 49 × 8 ) over ( 4 × 7 )
49 × 8
4 × 7
= 392 over 28
392
28
To divide fractions, invert the second one (turn it upside-down), then multiply the numerators and denominators.Divide
12 and 1 over 412
1
4
÷ 7 over 8
7
8
= 392 over 28
392
28
Step 1 of 2: Divide, sub-step a: Convert mixed number to improper fraction.
Convert mixed number to improper fraction
12 and 1 over 412
1
4
= ( 12 × 4 ) over 4
12 × 4
4
+ 1 over 4
1
4
= ( 48 + 1 ) over 4
48 + 1
4
= 49 over 4
49
4
Step 1 of 2: Divide, sub-step b: Divide.
Divide
49 over 4
49
4
÷ 7 over 8
7
8
= 49 over 4
49
4
× 8 over 7
8
7
= ( 49 × 8 ) over ( 4 × 7 )
49 × 8
4 × 7
= 392 over 28
392
28
To divide fractions, invert the second one (turn it upside-down), then multiply the numerators and denominators.
Answer:
the least integer for n is 2
Step-by-step explanation:
We are given;
f(x) = ln(1+x)
centered at x=0
Pn(0.2)
Error < 0.01
We will use the format;
[[Max(f^(n+1) (c))]/(n + 1)!] × 0.2^(n+1) < 0.01
So;
f(x) = ln(1+x)
First derivative: f'(x) = 1/(x + 1) < 0! = 1
2nd derivative: f"(x) = -1/(x + 1)² < 1! = 1
3rd derivative: f"'(x) = 2/(x + 1)³ < 2! = 2
4th derivative: f""(x) = -6/(x + 1)⁴ < 3! = 6
This follows that;
Max|f^(n+1) (c)| < n!
Thus, error is;
(n!/(n + 1)!) × 0.2^(n + 1) < 0.01
This gives;
(1/(n + 1)) × 0.2^(n + 1) < 0.01
Let's try n = 1
(1/(1 + 1)) × 0.2^(1 + 1) = 0.02
This is greater than 0.01 and so it will not work.
Let's try n = 2
(1/(2 + 1)) × 0.2^(2 + 1) = 0.00267
This is less than 0.01.
So,the least integer for n is 2