Answer:
568 ADULTS
284 CHILDREN
Step-by-step explanation:
5C+10A=7100
A=2C
5C +10(2C)=7100
5C+20C=7100
25C=7100
C=284
A=2C
A=568
BRAINLIEST???
Answer:
The options are not shown, so i will answer in a general way.
Let's define the variables:
h = number of hats
m = number of mugs.
We know that a total of 1000 items were ordered, then:
h + m = 1000
We also know that we have 3 times more mugs than hats, this can be written as:
m = 3*h
Now we have the system of equations:
h + m = 1000
m = 3*h
To solve these, we usually start by isolating one of the variables in one equation and then replace that in the other equation, but in this case, we already have m isolated in the second equation, then we can replace that in the first equation to get:
h + m = 1000
h + (3*h) = 1000
Now we can solve this equation for h, and find the number of hats ordered.
4*h = 1000
h = 1000/4 = 250
There were 250 hats ordered.
The minimum distance is the perpendicular distance. So establish the distance from the origin to the line using the distance formula.
The distance here is: <span><span>d2</span>=(x−0<span>)^2</span>+(y−0<span>)^2
</span> =<span>x^2</span>+<span>y^2
</span></span>
To minimize this function d^2 subject to the constraint, <span>2x+y−10=0
</span>If we substitute, the y-values the distance function can take will be related to the x-values by the line:<span>y=10−2x
</span>You can substitute this in for y in the distance function and take the derivative:
<span>d=sqrt [<span><span><span>x2</span>+(10−2x<span>)^2]
</span></span></span></span>
d′=1/2 (5x2−40x+100)^(−1/2) (10x−40)<span>
</span>Setting the derivative to zero to find optimal x,
<span><span>d′</span>=0→10x−40=0→x=4
</span>
This will be the x-value on the line such that the distance between the origin and line will be EITHER a maximum or minimum (technically, it should be checked afterward).
For x = 4, the corresponding y-value is found from the equation of the line (since we need the corresponding y-value on the line for this x-value).
Then y = 10 - 2(4) = 2.
So the point, P, is (4,2).
16+16+16+9+9=32+16+9+9=48+9+9=57+9=66
The answer is 66