A factorization of
is
.
<h3>What are the properties of roots of a polynomial?</h3>
- The maximum number of roots of a polynomial of degree
is
. - For a polynomial with real coefficients, the roots can be real or complex.
- The complex roots of a polynomial with real coefficients always exist in a pair of conjugate numbers i.e., if
is a root, then
is also a root.
If the roots of the polynomial
are
, then it can be factorized as
.
Here, we are to find a factorization of
. Also, given that
and
are roots of the polynomial.
Since
is a polynomial with real coefficients, so each complex root exists in a pair of conjugates.
Hence,
and
are also roots of the given polynomial.
Thus, all the four roots of the polynomial
, are:
.
So, the polynomial
can be factorized as follows:
![\{x-(-2+i\sqrt{7})\}\{x-(-2-i\sqrt{7})\}\{x-(1-i\sqrt{3})\}\{x-(1+i\sqrt{3})\}\\=(x+2-i\sqrt{7})(x+2+i\sqrt{7})(x-1+i\sqrt{3})(x-1-i\sqrt{3})\\=\{(x+2)^2+7\}\{(x-1)^2+3\}\hspace{1cm} [\because (a+b)(a-b)=a^2-b^2]\\=(x^2+4x+4+7)(x^2-2x+1+3)\\=(x^2+4x+11)(x^2-2x+4)](https://tex.z-dn.net/?f=%5C%7Bx-%28-2%2Bi%5Csqrt%7B7%7D%29%5C%7D%5C%7Bx-%28-2-i%5Csqrt%7B7%7D%29%5C%7D%5C%7Bx-%281-i%5Csqrt%7B3%7D%29%5C%7D%5C%7Bx-%281%2Bi%5Csqrt%7B3%7D%29%5C%7D%5C%5C%3D%28x%2B2-i%5Csqrt%7B7%7D%29%28x%2B2%2Bi%5Csqrt%7B7%7D%29%28x-1%2Bi%5Csqrt%7B3%7D%29%28x-1-i%5Csqrt%7B3%7D%29%5C%5C%3D%5C%7B%28x%2B2%29%5E2%2B7%5C%7D%5C%7B%28x-1%29%5E2%2B3%5C%7D%5Chspace%7B1cm%7D%20%5B%5Cbecause%20%28a%2Bb%29%28a-b%29%3Da%5E2-b%5E2%5D%5C%5C%3D%28x%5E2%2B4x%2B4%2B7%29%28x%5E2-2x%2B1%2B3%29%5C%5C%3D%28x%5E2%2B4x%2B11%29%28x%5E2-2x%2B4%29)
Therefore, a factorization of
is
.
To know more about factorization, refer: brainly.com/question/25829061
#SPJ9
Answer:
2²
Step-by-step explanation:
The prime factorization is only prime numbers multiplied
4 is 2(2) which is
2²
Answer:
The answer is C
Step-by-step explanation:
It starts at 25 and then it stops at 38.
I hope this helps!
The answer is b. 25.12
because we are finding the amount of rope to go around the circle, we are looking for the circumfrence of the circle, and the formula for the circumfrence of the circle is diameter(pi). because the radius of the circle is 4 inches, the diameter iss 8 inches because the diameter is 2(radius) and using multiplication, we can find the the circumfrence to be 25.12 inches
Let q be the number of 25 cent coins.
Let d be the number of 10 cent coins.
0.25q+0.10d= 3.95...(1)
q-d=6...(2)
(2)-> q-d= 6
q-d+d= 6+d
q= 6+d...(2a)
(2a)-> (1) 0.25q+0.10d=3.95
0.25(6+d)=0.10d= 3.95
1.95+0.25d+0.10d= 3.95
0.35d= 3.95-1.5
0.35d/0.35= 2.45/0.35
d= 7...(3)
(3)->(2) q-d= 6
q-7= 6
q=6+7
q= 13
There are 13 quarters and 7 dimes.