115 is the slope, and 5 is the y intercept. They tried tricking you by making x turn into m so you think you don't know the slope
3 over 20 is the fraction in simplest form.
Answer:
Area of composite figure = 216 cm²
Hence, option A is correct.
Step-by-step explanation:
The composite figure consists of two figures.
1) Rectangle
2) Right-angled Triangle
We need to determine the area of the composite figure, so we need to find the area of an individual figure.
Determining the area of the rectangle:
Given
Length l = 14 cm
Width w = 12 cm
Using the formula to determine the area of the rectangle:
A = wl
substituting l = 14 and w = 12
A = (12)(14)
A = 168 cm²
Determining the area of the right-triangle:
Given
Base b = 8 cm
Height h = 12 cm
Using the formula to determine the area of the right-triangle:
A = 1/2 × b × h
A = 1/2 × 8 × 12
A = 4 × 12
A = 48 cm²
Thus, the area of the figure is:
Area of composite figure = Rectangle Area + Right-triangle Area
= 168 cm² + 48 cm²
= 216 cm²
Therefore,
Area of composite figure = 216 cm²
Hence, option A is correct.
Given:
The expression is:

It leaves the same remainder when divided by x -2 or by x+1.
To prove:

Solution:
Remainder theorem: If a polynomial P(x) is divided by (x-c), thent he remainder is P(c).
Let the given polynomial is:

It leaves the same remainder when divided by x -2 or by x+1. By using remainder theorem, we can say that
...(i)
Substituting
in the given polynomial.


Substituting
in the given polynomial.



Now, substitute the values of P(2) and P(-1) in (i), we get




Divide both sides by 3.


Hence proved.
Answer:
j² - 5j²k - 2
Step-by-step explanation:
3j² - j²k - 6 - 4j²k - 2j² + 4
To simplify this polynomial, we can collect like terms. A term is number(s) or variable(s) that are grouped together by multiplication. <u>Like terms have the same variable and exponent</u>.
We have three groups of like terms:
The j-squares (j²), the j-squared k (j²k) and the constants (no variable).
Remember to include the negatives!
The j-squares are: 3j² ; -2j²
The j-squares k are: - j²k ; - 4j²k
The constants are: - 6 ; 4
Simplify:
3j² - j²k - 6 - 4j²k - 2j² + 4
Rearrange the polynomial by like terms
= (- j²k - 4j²k) + (3j² - 2j²) + (- 6 + 4)
Add or subtract the like terms
= (-5j²k) + (j²) + (-2)
Remove brackets and rearrange so the negative is not first
= j² + - 5j²k + - 2
Simplify where two signs are together. Adding a negative is subtraction.
= j² - 5j²k - 2 Simplified