Answer:
Step-by-step explanation:
Case 1
<u>O in between A and B </u>
<u>Distance between midpoints:</u>
Case 2
<u>B in between O and A</u>
<u>Distance between midpoints:</u>
Answer:
8 Joule
Step-by-step explanation:
Mass of block = 2 kg
Displacement = x = 800 mm = 0.8 m
Spring constant = k = 25 N/m
Potential Energy of a spring
Work done = Difference in Potential Energy
Work Done = Δ P.E.

⇒P.E. = 0.5×25×0.8²
⇒P.E. = 8 Nm = 8 Joule
Here already the spring constant and displacement is given so the mass will not be used while calculating the potential energy.
Answer:
1. x=4
2. x=6
Step-by-step explanation:
I've attached the graphs here:
Clearly, the solution for first one is(Reminder: the solution is the x-intercepts, when y is zero):
x=4
And the second is:
x=6
Hope this helps!
Mark brainliest if you think I helped! Would really appreciate!
Answer:
The answer is 672.
Step-by-step explanation:
To solve this problem, first let's find the surface area of the rectangular prism. To do that, multiply each dimension with each (times 2 | just in case you don't understand [what I'm talking about is down below]).
8 x 8 x 2 = 128
8 x 11 x 2 = 176
8 x 11 x 2 = 176
Then, add of the products together to find the surface area of the rectangular prism.
176 + 176 + 128 = 480
Now, let's find the surface area of the square pyramid. Now, for this particular pyramid, let's deal with the triangles first, then the square. Like we did with the rectangular prism above, multiply each dimension with each other (but dividing the product by 2 | in case you don't understand [what i'm talking about is down below]).
8 x 8 = 64.
64 ÷ 2 = 32.
SInce there are 4 triangles, multiply the quotient by 4 to find the surface area of the total number of triangles (what i'm talking about is down below).
32 x 4 = 128.
Now, let's tackle the square. All you have to do is find the area of the square.
8 x 8 = 64.
To find the surface area of the total square pyramid, add both surface areas.
128 + 64 = 192.
Finally, add both surface areas of the two 3-D shapes to find the surface area of the composite figure.
192 + 480 = 672.
Therefore, 672 is the answer.