Answer:
The energy returns to the weightlifter's muscles, where it is dissipated as heat.
Explanation:
The energy returns to the weightlifter's muscles, where it is dissipated as heat. As long as the weightlifter controls the weight's descent, their muscles are acting as an overdamped shock absorber, as if the weight were sitting on a piston containing very thick fluid, slowly compressing it downward (and slightly heating up the fluid in the process). Since muscles are complicated biological systems and not simple pistons, they require metabolic energy to maintain tension throughout the controlled descent, so the weightlifter feels like they're putting energy into the weight, even though the weight's gravitational potential energy is being converted into heat within the lifter's muscles.
Angular velocity is the rate of change of angle of a body, i.e. omega = v / r = (2*pi*r)/ r*t = (2*pi)/ T. where T is the time period of whatever is rotating and r is the radius of the circle. So if a circular disc is spinning at 1 m/s then the angular velocity of it is 2*pi radians/ second.
Answer:
Explanation is in the picture and the answer is 16
Answer:
10 m/s
Explanation:
Use the kinetic energy formula:
KE=(1/2)mv^2
I always remember it as Kevin is half-mad, and very square.
25J = (1/2)*0.5kg*(v^2)
50J = 0.5kg*(v^2)
100J = v^2
v = 10 m/s
Check it:
KE = (1/2)*0.5*(10^2)
KE = 25J
yep, it's right!
Answer: arrange systematically in groups; separate according to type, class, etc.
Explanation:
i hooked this up btw