1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Julli [10]
3 years ago
10

The weightlifter's internal store of energy decreased when he lifted the bar.

Physics
1 answer:
Mumz [18]3 years ago
5 0

Answer:

The energy returns to the weightlifter's muscles, where it is dissipated as heat.

Explanation:

The energy returns to the weightlifter's muscles, where it is dissipated as heat. As long as the weightlifter controls the weight's descent, their muscles are acting as an overdamped shock absorber, as if the weight were sitting on a piston containing very thick fluid, slowly compressing it downward (and slightly heating up the fluid in the process). Since muscles are complicated biological systems and not simple pistons, they require metabolic energy to maintain tension throughout the controlled descent, so the weightlifter feels like they're putting energy into the weight, even though the weight's gravitational potential energy is being converted into heat within the lifter's muscles.

You might be interested in
How do climate differences affect the movement at the Mariana Trench
vovangra [49]
It pushes the currents to opposite sides
8 0
3 years ago
011 10.0 points
Ulleksa [173]

Answer:

2.47 m

Explanation:

Let's calculate first the time it takes for the ball to cover the horizontal distance that separates the starting point from the crossbar of d = 52 m.

The horizontal velocity of the ball is constant:

v_x = v cos \theta = (25)(cos 35.9^{\circ})=20.3 m/s

and the time taken to cover the horizontal distance d is

t=\frac{d}{v_x}=\frac{52}{20.3}=2.56 s

So this is the time the ball takes to reach the horizontal position of the crossbar.

The vertical position of the ball at time t is given by

y=u_y t - \frac{1}{2}gt^2

where

u_y = v sin \theta =(25)(sin 35.9^{\circ})=14.7 m/s is the initial vertical velocity

g = 9.8 m/s^2 is the acceleration of gravity

And substituting t = 2.56 s, we find the vertical position of the ball when it is above the crossbar:

y=(14.7)(2.56) - \frac{1}{2}(9.8)(2.56)^2=5.52 m

The height of the crossbar is h = 3.05 m, so the ball passes

h' = 5.52- 3.05 = 2.47 m

above the crossbar.

8 0
3 years ago
the proper execution of suggested physical fitness tests is important inachieving the accuracyof the assessment results of one's
ankoles [38]

Answer:

Regular exercise and physical activity increase muscle strength, bone density, flexibility, and stability. Physical fitness can reduce your risk for and resilience to accidental injuries, especially as you get older.

5 0
3 years ago
A hole is punched at A in a plastic sheet by applying a 660-N force P to end D of lever CD, which is rigidly attached to the sol
olasank [31]

Answer:

hello your question lacks some data and required diagram

G = 77 GPa,  т all = 80 MPa

answer : required diameter = 252.65 * 10-^3 m

Explanation:

Given data :

force ( P )  = 660 -N force

displacement = 15 mm

G = 77 GPa

т all = 80 MPa

i) Determine the required diameter of shaft BC

considering the vertical displacement ( looking at handle DC from free body diagram )

D' = 0.3 sin∅  ,   where D = 0.015

hence ∅ = 2.8659°

calculate the torque acting at angle ∅  of  CD on the shaft BC

Torque = 660 * 0.3 cos∅

             = 660 * 0.3 * cos 2.8659 = 198 * -0.9622 = 190.5156 N

hello attached is the remaining part of the solution

4 0
3 years ago
a spring is stretched 20 cm by a 30.0 n force. determine the work done in stretching the spring from 0 to 40 cm?
Alekssandra [29.7K]

The work done when a spring is stretched from 0 to 40cm is 4J.

What is work done?

Work done is the magnitude of force multiplied by displacement of an object. It is also the amount of energy transferred to an object when work is done on that.

The work done on the spring to stretch to 40cm is,

F = kx

where F is force, k is force constant.

k = F / x = 10 N / 20 * 10^-2 m = 50 N/m

W = 0.5 * k * (x)^2

where W = work done, k = force constant.

W = 0.5 x 50 x (40 x 10^-2)^2 = 4 J.

Therefore, the work done on the spring when it is stretched to 40cm is 4J.

To learn more about work done click on the given link brainly.com/question/25573309

#SPJ4

3 0
1 year ago
Other questions:
  • A group of 25 particles have the following speeds: two have speed 11m/s , seven have 16m/s , four have 22m/s , three have 25m/s
    10·1 answer
  • PLEASE HELP
    10·1 answer
  • A mirror with a flat surface is a
    14·2 answers
  • Convert 1,200 meters to millimeters
    13·1 answer
  • When comparing an x-ray to a radio wave, what should you look for to determine which formula represents the x-ray?
    10·2 answers
  • In a front-end collision, a 1500 kg car with shock-absorbing bumpers can withstand a maximumforce of 80 000 N before damage occu
    8·1 answer
  • During a new moon, the moon is between the
    12·1 answer
  • A 350 −Ω resistor and a 6.40 −μF capacitor are connected in parallel to an ac generator that supplies an rms voltage of 220 V at
    13·1 answer
  • 2. What is the speed of a car that travels 73.4 kilometers (km) in 5 hours?
    6·2 answers
  • Explain one inference scientists made about the interior of the Earth based on seismic waves. Use the words S & P waves in y
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!