Irrational numbers are numbers that cannot be expressed in fractions
Solution:
a=-2 b=1 c=4 d=0
Analysis:
When we multiply a matrix by a constant, we multiply each term of the matrix by the constant.
In this case, as we need to find the value of the initial matrix, we can divide each term of the matrix by the constant. In this case, let´s divide by -5
So, it would be:
a=10/-5 a=-2
b=-5/-5 b=1
c=-20/-5 c=4
d=0/-5 d=0
<span>No entiendo esto, esta no es una pregunta. Más que un hecho realmente.</span>
Answer:
x = 12 or 
Step-by-step explanation:
Find the length of x for one side of the triangle first. To do this, use the Pythagorean Theorem which states: a² + b² = c² or in this case c² - a² = b². c² is 45 and a² is 3*3 or 9. Subtract 45-9 to get 36. Find the square root of 36 to get 6. The opposite side is also going to have a missing side length of 6 so add 6+6 to get 12 as x.
Hope it helps!
let's firstly convert the mixed fractions to improper fractions and then sum them up.
![\bf \stackrel{mixed}{2\frac{2}{8}}\implies \cfrac{2\cdot 8+2}{8}\implies \stackrel{improper}{\cfrac{18}{8}}~\hfill \stackrel{mixed}{2\frac{1}{4}}\implies \cfrac{2\cdot 4+1}{4}\implies \stackrel{improper}{\cfrac{9}{4}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{18}{8}+\cfrac{9}{4}\implies \stackrel{\textit{using the LCD of 8}}{\cfrac{(1)18+(2)9}{8}}\implies \cfrac{18+18}{8}\implies \cfrac{36}{8}\implies \cfrac{9}{2}\implies 4\frac{1}{2}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B2%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%208%2B2%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B18%7D%7B8%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B2%5Cfrac%7B1%7D%7B4%7D%7D%5Cimplies%20%5Ccfrac%7B2%5Ccdot%204%2B1%7D%7B4%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B9%7D%7B4%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B18%7D%7B8%7D%2B%5Ccfrac%7B9%7D%7B4%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Busing%20the%20LCD%20of%208%7D%7D%7B%5Ccfrac%7B%281%2918%2B%282%299%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B18%2B18%7D%7B8%7D%5Cimplies%20%5Ccfrac%7B36%7D%7B8%7D%5Cimplies%20%5Ccfrac%7B9%7D%7B2%7D%5Cimplies%204%5Cfrac%7B1%7D%7B2%7D)