Answer:
(D)
Step-by-step explanation:
For there too be a parallelogram, you must have two pairs of opposite side parallel lines. This means that KN & LN must be parallel, and KL & NM have to be parallel.
~
Answer: 19.8 ft
Step-by-step explanation:
Use the Pythagorean Theorem formula to solve for how high the top of the ladder reach.
The formula says a^2 + b^2 = c^2
Where a and b are the two legs and C is the hypotenuse.
In this situation, the hypotenuse will be length of the ladder , and either a or b will be the length of the ladder from the building or the length of how long the ladder.
a will be 3 , and c will be 20. Input in the values into the formula and solve for b.
3^2 + b^2 = 20^2
9 + b^2 = 400
-9 -9
b^2 = 391
b =
b = 19.77371 round to the nearest tenth is , 19.8
Answer:
Let the angle=x
So the other angle will be = y
X-28 +y=90
Answer: The ratio is 2.39, which means that the larger acute angle is 2.39 times the smaller acute angle.
Step-by-step explanation:
I suppose that the "legs" of a triangle rectangle are the cathati.
if L is the length of the shorter leg, 2*L is the length of the longest leg.
Now you can remember the relation:
Tan(a) = (opposite cathetus)/(adjacent cathetus)
Then there is one acute angle calculated as:
Tan(θ) = (shorter leg)/(longer leg)
Tan(φ) = (longer leg)/(shorter leg)
And we want to find the ratio between the measure of the larger acute angle and the smaller acute angle.
Then we need to find θ and φ.
Tan(θ) = L/(2*L)
Tan(θ) = 1/2
θ = Atan(1/2) = 26.57°
Tan(φ) = (2*L)/L
Tan(φ) = 2
φ = Atan(2) = 63.43°
Then the ratio between the larger acute angle and the smaller acute angle is:
R = (63.43°)/(26.57°) = 2.39
This means that the larger acute angle is 2.39 times the smaller acute angle.
It would have the be B. 16