This can be solved by using the normal approximation to the binomial distribution.
mean = np = 10.000 * 0.5 = 5,000
The standard deviation is given by:


The probability of obtaining more than 5100 tails is 0.0228 and the probability of obtaining fewer than 5100 tails is 0.9772.
The odds of obtaining more than 5100 tails is therefore:
0.0228:0.9772 = 1:42.86.
4/20 is 0.20, which is equivalent to 20%.
Remember that 1.0=100%, 0.5=50%, 0.2=20%, 0.05=5%, and so on.
Maybe 10 or something i dont know im only 10 so i cant really answer that i just need points
Answer:
1m
Step-by-step explanation:
hope that helps
Answer: 37 units
Step-by-step explanation:
This also works as the height of the triangle.
This also works as the base of the triangle.
Let's call pink ''a'', and blue ''b''. The side we're looking for ''c'' is the hypothenuse.
To find the values of a and b, use the area formula of a square and solve for a side. In this case, since we're going to need the squared values, this step can be omitted.

![s=\sqrt[]{A}](https://tex.z-dn.net/?f=s%3D%5Csqrt%5B%5D%7BA%7D)
Let's work with Blue.
![s=\sqrt[]{144units^2} \\s=12units](https://tex.z-dn.net/?f=s%3D%5Csqrt%5B%5D%7B144units%5E2%7D%20%5C%5Cs%3D12units)
Now Pink.
![s=\sqrt[]{1225units^2}\\s=35units](https://tex.z-dn.net/?f=s%3D%5Csqrt%5B%5D%7B1225units%5E2%7D%5C%5Cs%3D35units)
So we have a triangle with a base of 35 units and a height of 12 units.
Now let's use the pythagoream's theorem to solve.
![c^2=a^2+b^2\\c=\sqrt[]{a^2+b^2} \\c=\sqrt[]{(12units)^2+(35units)^2}\\c=\sqrt[]{144units^2+1225units^2}\\ c=\sqrt[]{1369units^2}\\ c=37units](https://tex.z-dn.net/?f=c%5E2%3Da%5E2%2Bb%5E2%5C%5Cc%3D%5Csqrt%5B%5D%7Ba%5E2%2Bb%5E2%7D%20%5C%5Cc%3D%5Csqrt%5B%5D%7B%2812units%29%5E2%2B%2835units%29%5E2%7D%5C%5Cc%3D%5Csqrt%5B%5D%7B144units%5E2%2B1225units%5E2%7D%5C%5C%20c%3D%5Csqrt%5B%5D%7B1369units%5E2%7D%5C%5C%20c%3D37units)