Answer:
The wavelength of wave is 7.5 meter.
Given:
Speed of wave = 1500 
Frequency of wave = 200 Hz
To find:
Wavelength of wave = ?
Formula used:

Where
= wavelength of the wave
v = speed of wave
n = frequency of wave
Solution:
Wavelength of wave is given by,

Where
= wavelength of the wave
v = speed of wave
n = frequency of wave

= 7.5 m
The wavelength of wave is 7.5 meter.
Answer:
Impulse = change in momentum w bounce
There are 2 impulses acting. Recoil of the fan going the negative direction and the impulse of the air bouncing off the sail. The greater impulse will bounce so the direction will be to the right moving the craft.
Answer:
Explanation:
which is the final velocity minus the initial velocity in the numerator, and the change in time in the denominator. For us:
so
a = .92 m/s/s (NOT negative because you're speeding up)
W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules