Answer:
a. 1100 meters.
b. Between B and C
c.1. Between point D and E
c2. Between point D and E
d. 3.7 m/s.
Explanation:
The girl travels the distance of 1100 meters from starting to the end. There is no motion occurs between B and C due to no change of distance value from 200 meters. Between point D and E, the girls covers 500 meters long distance and also covers fastest distance between point D and E because between point D and E, the girl covers 500 meters distance in 30 seconds which is the highest of all. The average speed of the girls is 3.7 meter/seconds if we divide total distance i.e. 1100 meters by time which is 300 seconds.
It takes the shape of the cup and it can be sucked through a straw
Answer:
The entropy of a gas increases when it expands into a vacuum because the number of possible states increases .
Explanation:
When a gas expand in a vacuum, the molecules of the gases vibrates very fast and starting moving with higher velocity in random directions which means the level of disorder in the gases increases.
Now the possible state of the gas molecule increases such as the particle can be located at different position due to increased randomness.
<u>Entropy is the measure of this randomness and thus with this increased randomness entropy also increases.</u>
Answer:
The rate at which radar must rotate is 0.335 rad/s.
Explanation:
Given that,
Velocity = 65 m/h = 29.0576 m/s
Angle = 15°
Suppose, the radius given by

We need to calculate the rate at which radar must rotate
Using formula of linear velocity


Where, v = velocity
r = radius
Put the value into the formula


Hence, The rate at which radar must rotate is 0.335 rad/s.