Habitat fragmentation is a cost of urban development.
Option: A
Explanation:
Though from the view point or perspective of up gradation and development urban development is much needed but in cost of habitat fragmentation which feels very bitter. As habitat fragmentation leads to the loss of habitat, disruption of ecological cycle and environmental equilibrium.
Actually in the name of urban development we the human use our bread giver environment in a wrong way which causes natural disasters in long run. Animals become endangered , vulnerable and extinct with passage of time. Because they forced to enter into human settlements.
A five pushing and letting go of the yoyo
Answer:
(B) 1.6 m/s^2
Explanation:
The equation of the forces acting on the box in the direction parallel to the slope is:
(1)
where
is the component of the weight parallel to the slope, with m = 6.0 kg being the mass of the box, g = 9.8 m/s^2 being the acceleration of gravity,
being the angle of the incline
is the frictional force, with
being the coefficient of kinetic friction, N being the normal reaction of the plane
a is the acceleration
The equation of the force along the direction perpendicular to the slope is

where
is the component of the weight in the direction perpendicular to the slope. Solving for N,

Substituting into (1), solving for a, we find the acceleration:

Answer:
28.8 meters
Explanation:
We must first determine at which velocity the ball hits the water. To do so we will:
1) Assume no air resistance.
2) Use the Law of conservation of mechanical energy: E=K+P
Where
E is the mechanical energy (which is constant)
K is the kinetic energy.
P is the potential energy.
With this we have
Where:
m is the balls's mass <- we will see that it cancels out and as such we don't need to know it.
v is the speed when it hits the water.
g is the gravitational constant (we will assume g=9.8
.
h is the height from which the ball fell.
Because when we initially drop the ball, all its energy is potential (and
) and when it hits the water, all its energy is kinetic (
. And all that potential was converted to kinetic energy.
Now, from
we can deduce that 
Therefore v=9.6
Now, to answer how deep is the lake we just need to multiply that speed by the time it took the ball to reach the bottom.
So D=9.6
*3
=28.8
Which is our answer.