Answer:
25 dobles y 42 sencillas
Step-by-step explanation:
25 x 2 = 50 camas + 42 = 92
y 25 habitaciones dobles + 42 sencillas = 67
Answer:
x < -4 or x > 7.
Step-by-step explanation:
We first determine the critical points by solving x^2 - 3x - 28 = 0:
x^2 - 3x - 28 = 0
(x - 7)(x + 4) = 0
x = 7, - 4
so the critical points are -4 and 7.
Create a Table (pos = positive and neg = negative):
Value of x< - 4 -4 < x < 7 x > 7
---------------------|----------- |--------------------- |---------------------
x + 4 NEG POS POS
x - 7 NEG NEG POS
(x + 4)(x - 7) POS NEG POS
So the function is positive (>0) for x < -4 or x > 7.
You can also do this by drawing the graph of the function.
Answer:
Step-by-step explanation:
Graph the parent function y = |x|. This graph has a v shape with vertex at (0, 0) and opens up.
Now translate the entire graph 6 units to the right. The vertex will now be at (6, 0).
Finally, translate this most recent graph 4 units down. The vertex will now be at (6, -4).
Answer:
rate of the plane in still air is 33 miles per hour and the rate of the wind is 11 miles per hour
Step-by-step explanation:
We will make a table of the trip there and back using the formula distance = rate x time
d = r x t
there
back
The distance there and back is 264 miles, so we can split that in half and put each half under d:
d = r x t
there 132
back 132
It tells us that the trip there is with the wind and the trip back is against the wind:
d = r x t
there 132 = (r + w)
back 132 = (r - w)
Finally, the trip there took 3 hours and the trip back took 6:
d = r * t
there 132 = (r + w) * 3
back 132 = (r - w) * 6
There's the table. Using the distance formula we have 2 equations that result from that info:
132 = 3(r + w) and 132 = 6(r - w)
We are looking to solve for both r and w. We have 2 equations with 2 unknowns, so we will solve the first equation for r, sub that value for r into the second equation to solve for w:
132 = 3r + 3w and
132 - 3w = 3r so
44 - w = r. Subbing that into the second equation:
132 = 6(44 - w) - 6w and
132 = 264 - 6w - 6w and
-132 = -12w so
w = 11
Subbing w in to solve for r:
132 = 3r + 3(11) and
132 = 3r + 33 so
99 = 3r and
r = 33