Answer:
(i) She gives each student a pretest. Then she teaches a lesson using a computer program. Afterwards, she gives each student a posttest. The teacher wants to see if the difference in scores will show an improvement.
Step-by- Step
The situation is a case of matched or paired samples since the samples are dependent. The two measurements are drawn from the same pair of individuals The parameter that is tested using matched pairs is the population mean and this is what teacher intends to use a hypothesis test for.
Answer:
15/4 and 45/4
Step-by-step explanation:
Let x and y be the numbers
x = 3y
x+ y = 15
Substitute the first equation in to the second equation
3y+y = 15
4y = 15
y = 15/4
x = 3(15/4)
x = 45/4
The two numbers are 15/4 and 45/4
Answer:
13
Step-by-step explanation:
<span>1) Write the point-slope form of the equation of the horizontal line that passes through the point (2, 1). y = 1/2x
2)Write the point-slope form of the equation of the line that passes through the points (6, -9) and (7, 1).
m = (-9 - 1) / (6 - 7) = -10/-1 = 10
y + 9 = 10 (x - 6)
y = 10x - 69
3) A line passes through the point (-6, 6) and (-6, 2). In two or more complete sentences, explain why it is not possible to write the equation of the given line in the traditional version of the point-slope form of a line.
4)Write the point-slope form of the equation of the line that passes through the points (-3, 5) and (-1, 4).
m = (5 - 4) / (-3 - -1) = 1/-2
y - 5 = (-1/2) (x +3)
y = (-1/2)x + 7/2
5) Write the point-slope form of the equation of the line that passes through the points (6, 6) and (-6, 1).
m = (6-1)/(6 - -6) = 5 / 12
y - 6 = (5/12) (x-6)
y = (5/12)x + 17 / 2
6) Write the point-slope form of the equation of the line that passes through the points (-8, 2) and (1, -4).
m = (2 - -4) / (-8 -1) = 6 / -7
y - 2 = (-6/7) (x + 8)
y = (-6/7)x - 50 / 7
7) Write the point-slope form of the equation of the line that passes through the points (5, -9) and (-6, 1).
m = (-9 - 1) / (5 - -6) = -10 / 11
y + 9 = (-10 / 11) (x - 5)
y = (-10 / 11)x -49/11
</span>