potential energy because it has the ability to do work
Explanation:
A rock resting high in a cliff is an example of potential energy because it has the ability to do work. This form of energy is called potential energy.
- Energy is defined as the ability to do work. To do work, force must applied using energy to move a body through a particular distance.
- A body at rest is not doing any work. This is the case with potential energy of the body on a high cliff.
- At the state of rest, it is not doing any work.
- The potential energy of this body expresses the ability of such body to do work.
Learn more:
Potential energy brainly.com/question/10770261
#learnwithBrainly
Answer:
The correct answer is V√5
Explanation:
Let V be the velocity of the satellite orbiting at radius r.
Let V(5r) be the velocity of the satellite orbiting at radius 5r.
Recall:
Escape velocity is given by:
V = √(2gr)
Where V is the escape velocity
g is the acceleration due to gravity
r is the radius of the earth.
With the above equation, we can obtain the answer to the question as follow:
V = √(2gr)
V(5r) = √(2g5r)
Next, we'll obtained the ratio of V(5r) to V as shown below
V(5r) : V => V(5r)/V
V(5r)/V = √(2g5r) / √(2gr)
V(5r)/V = √5
Cross multiply
V(5r) = V√5
From the above illustration, we can see that when the satellite is moved to 3r, then the expression for the velocity will be V√5
Firstly let us get the time down to minutes from hours. Then the calculation will become easy.
1 hour and 45 minutes = (60 + 45) minutes
= 105 minutes
So
The distance traveled by the car in 105 minutes = 98 miles
Then
The distance traveled by the car in 60 minutes = (98/105) * 60 miles
= 5880/105 miles
= 56 miles
So the average speed of the car as can be seen from the above deduction is 56 miles per hour.
Answer:
Answered
Explanation:
A) The work done by gravity is zero because displacement and the gravitational force are perpendicular to each other.
W= FS cosθ
θ= 90 ⇒cos90 = 0 ⇒W= 0
B) work done by tension
W= Tcosθ×S= 5cos30×2.30= 10J
C) Work done by friction force
W= f×s=1×2.30= 2.30 J
D) Work done by normal force is Zero because the displacement and the normal force are perpendicular to each other.
E) The net work done= Work done by tension in the rope - frictional work
=10-2.30= 7.7 J