Answer:
C) Faults form in the lithosphere.
Explanation:
Faults form in lithosphere is part of transform boundaries because the plates simply slide past each other without causing any change to the lithosphere (i.e it is neither created nor destroyed) which is why transform boundaries are also sometimes referenced when we speak about phenomena related to when plates slide in opposite directions.
I believe that the anwser wouldn be number 3
<h2>Lac operon </h2>
Explanation:
Lac operon present in prokaryotic chromosomes whose product involves in transportation and catabolism of lactose
- Lac operon consists of three structural genes called Lac Z,Lac Y and Lac A and a regulatory element(promoter and operator)
- Lac I gene is present outside the Lac operon,act as regulatory gene and control the expression of Lac operon genes
- Lac Z codes for β galactosidase which converts lactose into allolactose
- Lac Y codes for Lac permease which act as a membrane transporter and transport lactose into the cells
- Lac A codes for transacetylase which neutralize the toxic effects of lactose
Lac operon in absence of lactose
- In absence of lactose Lac operon exists in switch off state
- Lac I gene produces Lac repressor which binds to operator region and prevent binding of RNA Polymerase thus blocks transcription
Lac operon in presence of lactose
- In presence of lactose Lac operon exists in switch on state
- In presence of lactose few molecules of Lac operon enzyme catalyse conversion of lactose to allolactose
- Allolactose act as an inducer,binds to the Lac repressor and induce conformational changes causing dissociation of Lac repressor from operator
- In absence of Lac repressor RNA Polymerase binds to the promoter and starts transcription of genes which catabolize lactose
Lac promoter is a weak promoter and direct transcription of Lac operon genes in very low level in presence of lactose
- For higher level expression of Lac operon genes,operon system require conversion of weak promoter to strong promoter which is always mediated by catabolite protein-cAMP complex(CAP-cAMP complex)
- CAP cAMP complex binds to the upstream of promoter called CAP binding site and stimulate expression of Lac operon genes by facilitating binding of RNA Polymerase
- Catabolite activator protein(CAP) or cAMP receptor protein(CRP) activate when cAMP binds
- cAMP is a secondary messenger synthesized from ATP and act as co-activator of CRP
- With respect to CAP cAMP complex Lac operon system is positively controlled
- In prokaryotic cell cAMP is very low when glucose concentration is relatively high and vice versa
- At high concentration of glucose the growth rate is maximum and lactose catabolism is repressed called catabolite repression
<span>Kepler is the scientist who focused his study on the planetary motion and his law was that planets orbit the sun in the elliptical patterns. </span>
Answer:
Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand.
Fossil fuel production is another human activity that places considerable strain on drinking water — and not just because fracking and coal mining use a great deal of water, but because their waste products can pollute groundwater, and therefore drinking water, as well.Water resources face a host of serious threats, all caused primarily by human activity. They include pollution, climate change, urban growth, and landscape changes such as deforestation. Each of them has its own specific impact, usually directly on ecosystems and in turn on water resources.