Answer:
a. 58
b. 35
Step-by-step explanation:
a. Given,
sinθ = cos 32
We know that cos x = sin (90 - x)
⇒ sin θ = sin (90 - 32)
⇒ sin θ = sin 58
⇒ θ = 58
Thus, the value of θ would be 58.
b. Given,
cosθ = sin(θ+20),
sin (90 - θ) = sin (θ + 20)
⇒ 90 - θ = θ + 20
⇒ 90 - 20 = θ + θ
⇒ 70 = 2θ
⇒ θ = 35
Thus, the value of θ would be 35.
Answer:
At (0, -5)
Step-by-step explanation:
The y-intercept (b) is -5 (<em>slope intercept form: y = mx + b</em>) the line will thus cross the y axis at the point (0, -5).
Answer:
4i.
Step-by-step explanation:
To find the flux through the square, we use the divergence theorem for the flux. So Flux of F(x,y) = ∫∫divF(x,y).dA
F(x,y) = hxy,x - yi
div(F(x,y)) = dF(x,y)/dx + dF(x,y)dy = dhxy/dx + d(x - yi)/dy = hy - i
So, ∫∫divF(x,y).dA = ∫∫(hy - i).dA
= ∫∫(hy - i).dxdy
= ∫∫hydxdy - ∫∫idxdy
Since we are integrating along the boundary of the square given by −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, then
∫∫divF(x,y).dA = ∫₋₁¹∫₋₁¹hydxdy - ∫₋₁¹∫₋₁¹idxdy
= h∫₋₁¹{y²/2}¹₋₁dx - i∫₋₁¹[y]₋₁¹dx
= h∫₋₁¹{1²/2 - (-1)/2²}dx - i∫₋₁¹[1 - (-1)]dx
= h∫₋₁¹{1/2 - 1)/2}dx - i∫₋₁¹[1 + 1)]dx
= 0 - i∫₋₁¹2dx
= - 2i[x]₋₁¹
= 2i[1 - (-1)]
= 2i[1 + 1]
= 2i(2)
= 4i
Answer:
q = 14
General Formulas and Concepts:
- Order of Operations: BPEMDAS
- Equality Properties
- Complementary Angles: Angles that add up to 90°
Step-by-step explanation:
<u>Step 1: Set up equation</u>
<em>The 2 angles must add up to 90°.</em>
(4q - 5)° + 39° = 90°
<u>Step 2: Solve for </u><u><em>q</em></u>
- Combine like terms: 4q + 34 = 90
- Subtract 34 on both sides: 4q = 56
- Divide both sides by 4: q = 14