Answer:

Step-by-step explanation:
Given
sinΘ =
= 
Then the hypotenuse = 5 and one leg of the right triangle is 3
Using Pythagoras' identity to find the second leg (x)
x² + 3² = 5²
x² + 9 = 25 ( subtract 9 from both sides )
x² = 16 ⇒ x = 4
cosΘ =
= 
Answer:
yniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehcsacasvavadvadvsdvsdvsdvdvdvyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh ollehyniar hcum oot sti ereh pleh esaelp retaw eht rednu ma i uoy era woh olleh
Step-by-step explanation:
Answer:
The solution is in the attached file
Answer:
Z=-3 or Z=11
Step-by-step explanation:
we know that
The distance between point Y and point Z is 7 units
The point Y is located on the number line at 4
we have two possibilities
The point Z could be located to the right of point Y
The point Z could be located to the left of point Y
so
Z is either 7 units to the left of 4 or 7 units to the right of 4
<em>First case</em>
point Z to the right of point Y
To find out the coordinate of point Z sum the distance YZ to the coordinate of point Y
so
(4+7)=11
therefore
The first possibility is
Point Z is located at 11
<em>Second case</em>
point Z to the left of point Y
To find out the coordinate of point Z subtract the distance YZ from the coordinate of point Y
so
(4-7)=-3
therefore
The second possibility is
Point Z is located at -3
therefore
Z=-3 or Z=11