1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
____ [38]
2 years ago
8

A case of tomato cans weighs 563 dekagrams. A case of soup cans weighs 458 dekagrams. How much do the two cases weigh together i

n decigrams? Use the metric table to help answer the question.
Metric Table
kilo- 1,000 hecto- 100 deka- 10 unit 1 deci- 0.1 centi- 0.01 milli- 0.001
o 1,021 decigrams
o 10,210 decigrams
o 102,100 decigrams
0 1,021,000 decigrams

Hurry please i need help.
Mathematics
2 answers:
oee [108]2 years ago
6 0

Answer:

  102,100 decigrams

Step-by-step explanation:

  (564 dag + 458 dag) = 1021 dag

  1021 dag × 100 dg/dag = 102100 dg

The two cases together weigh 102,100 decigrams.

_____

1 dag = 10 g

1 dg = 0.1 g

andriy [413]2 years ago
6 0

Answer:

 102,100 decigrams

Step-by-step explanation:

You might be interested in
Help with this, i looked over the slides and they didn't help
FromTheMoon [43]

Answer:

its A

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
HURRY LZ HURRY !)))) POINTS
NikAS [45]

Answer:

4 minus a number times three

5 0
3 years ago
Read 2 more answers
The cost of bananas is 2.40 for 5 pounds, what is the price per pound?​
lesya692 [45]

Answer:

$0.48

Step-by-step explanation:

$2.40 divided by 5 pounds equals $0.48 per pound.

6 0
2 years ago
Read 2 more answers
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
2 years ago
Read 2 more answers
Please answer question 1
Paha777 [63]
I'm pretty sure it's team jaguars
3 0
2 years ago
Other questions:
  • Calculate the slope of the points (-2, -1) and (3, 4)
    6·2 answers
  • The expression \dfrac12bh 21​ bhstart fraction, 1, divided by, 2, end fraction, b, h gives the area of a triangle where bbb is t
    13·2 answers
  • The product of two numbers is 144, bu their sum is -24. What are these two numbers?
    15·1 answer
  • Please help! Thanks :)
    13·1 answer
  • PLEASEEEE HELLLPPPPP
    8·1 answer
  • Simplify the expression.<br> -1+1(-7+3v)-5v
    14·1 answer
  • Evaluate each expression please help guys
    13·1 answer
  • Help me and ily :))))
    10·2 answers
  • Mark all of the transformations that will result in the object changing size.
    14·1 answer
  • 6) An expression is given.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!