Answer:
300 Nm ; 300 J
Explanation:
Given that:
Force (F) = 20 N
Distance (d) = 15 m
The kinetic energy (Workdone) = Force * Distance
Kinetic Energy = 20N * 15m
Kinetic Energy = 300Nm
K. E = 1/2
Answer:
1.7333333m/s²
Explanation:
Tension of the line = the weight + force from pulling up the fish
30N = mg + ma
30 = (6)(9.8) + (6)a
10.4 = 6a
∴ a = 1.7333333m/s²
Answer:
The speed of q₂ is 
Explanation:
Given that,
Distance = 0.4 m apart
Suppose, A small metal sphere, carrying a net charge q₁ = −2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q₂ = −8μC and mass 1.50g, is projected toward q₁. When the two spheres are 0.800m apart, q₂ is moving toward q₁ with speed 20m/s.
We need to calculate the speed of q₂
Using conservation of energy



Put the value into the formula






Hence, The speed of q₂ is 
Answer
Given,
Average speed of Malcolm and Ravi = 260 km/h
Let speed of the Malcolm be X and speed of the Ravi Y.
From the given statement

....(i)
....(ii)
Adding both the equations
3 X = 600
X = 200 km/h
Putting value in equation (i)
Y = 520 - 200
Y = 320 Km/h
Speed of Malcolm = 200 Km/h
Speed of Ravi = 320 Km/h
Atmospheric pressure is caused by the weight of the atmosphere pushing down on itself and on the surface below it.
Pressure is defined as the force acting on an object divided by the area upon witch the force is acting.