Answer:
306 m/s
Explanation:
Law of conservation of momentum
m1v1 + m2v2 = (m1+m2)vf
m1 is the bullet's mass so it is 0.1 kg
v1 is what we're trying to solve
m2 is the target's mass so it is 5.0 kg
v2 is the targets velocity, and since it was stationary, its velocity is zero
vf is the velocity after the target is struck by the bullet, so it is 6.0 m/s
plugging in, we get
(0.1 kg)(v1) + (5.0 kg)(0 m/s) = (0.1 kg + 5.0 kg)(6.0 m/s)
(0.1)(v1) + 0 = 30.6
(0.1)(v1) = 30.6
v1 = 306 m/s
Well, I guess you can come close, but you can't tell exactly.
It must be presumed that the seagull was flying through the air
when it "let fly" so to speak, so the jettisoned load of ballast
of which the bird unburdened itself had some initial horizontal
velocity.
That impact velocity of 98.5 m/s is actually the resultant of
the horizontal component ... unchanged since the package
was dispatched ... and the vertical component, which grew
all the way down in accordance with the behavior of gravity.
98.5 m/s = √ [ (horizontal component)² + (vertical component)² ].
The vertical component is easy; that's (9.8 m/s²) x (drop time).
Since we're looking for the altitude of launch, we can use the
formula for 'free-fall distance' as a function of acceleration and
time:
Height = (1/2) (acceleration) (time²) .
If the impact velocity were comprised solely of its vertical
component, then the solution to the problem would be a
piece-o-cake.
Time = (98.5 m/s) / (9.81 m/s²) = 10.04 seconds
whence
Height = (1/2) (9.81) (10.04)²
= (4.905 m/s²) x (100.8 sec²) = 494.43 meters.
As noted, this solution applies only if the gull were hovering with
no horizontal velocity, taking careful aim, and with malice in its
primitive brain, launching a remote attack on the rich American.
If the gull was flying at the time ... a reasonable assumption ... then
some part of the impact velocity was a horizontal component. That
implies that the vertical component is something less than 98.5 m/s,
and that the attack was launched from an altitude less than 494 m.
The force of gravity is the
force with which massively large objects such as the earth attracts another
object towards itself. All objects of the earth exert a gravity that is
directed towards the center of the earth. Therefore, the force of gravity of
the earth is equal to the mass of the object times acceleration due to gravity and also equal to the weight of the object.
F = ma
since F = W
W = ma
Answer:
Fluorescent lighting is usually used.
Explanation: