Answer:
z = 3,737 10⁵ m
Explanation:
a) As they indicate that the atmosphere behaves like an ideal gas, we can use the equation
P V = n R T
P = (n r / V) T
We replace
P = (n R / V) T₀
b) Let's apply this equation in the points
Lower
.z = 0
P₀ = 610 Pa
P₀ = (nR / V) T₀
Higher.
P = 10 Pa
P = (n R / V) T₀ e^{- C z}
We replace
P = P₀ e^{- C z}
e^{- C z} = P / P₀
C z = ln P₀ / P
z = 1 / C ln P₀ / P
Let's calculate
z = 1 / 1.1 10⁻⁵ ln (610/10)
z = 3,737 10⁵ m
Its letter C. 5N to the left. Since Jeremy's force in Newtons are higher than Amanda's (in newtons), and since Jeremy's force directs to the left, then the direction of the force will be to the LEFT. Then subtract the higher one to the lower one so that would be: 10N-5N=5N. So it is C. 5N to the left.
Answer:
110 m
Explanation:
Draw a free body diagram of the car. The car has three forces acting on it: normal force up, weight down, and friction to the left.
Sum of the forces in the y direction:
∑F = ma
N − mg = 0
N = mg
Sum of the forces in the x direction:
∑F = ma
-F = ma
-Nμ = ma
Substitute:
-mgμ = ma
-gμ = a
Given μ = 0.40:
a = -(9.8 m/s²) (0.40)
a = -3.92 m/s²
Given that v₀ = 30 m/s and v = 0 m/s:
v² = v₀² + 2aΔx
(0 m/s)² = (30 m/s)² + 2 (-3.9s m/s²) Δx
Δx ≈ 110 m
Answer:
7) λ = 0.5 m, 8) f = 4.8 10¹⁴ Hz
Explanation:
The speed of an electromagnetic wave is
c = λ f
where c is the speed of light in vacuum c = 3 10⁸ m / s
7) indicate the frequency f = 6.0 10⁸ Hz
we do not know the wavelength
λ = c / f
we calculate
λ = 3 10⁸ / 6.0 10⁸
λ = 0.5 m
8) indicate the wavelength λ = 6.25 10-7 m
we do not know the frequency
f = c / λ
we calculate
f = 3 10⁸ / 6.25 10⁻⁷
f = 0.48 10¹⁵ Hz
f = 4.8 10¹⁴ Hz
The component of the crate's weight that is parallel to the ramp is the only force that acts in the direction of the crate's displacement. This component has a magnitude of
<em>F</em> = <em>mg</em> sin(20.0°) = (15.0 kg) (9.81 m/s^2) sin(20.0°) ≈ 50.3 N
Then the work done by this force on the crate as it slides down the ramp is
<em>W</em> = <em>F d</em> = (50.3 N) (2.0 m) ≈ 101 J
The work-energy theorem says that the total work done on the crate is equal to the change in its kinetic energy. Since it starts at rest, its initial kinetic energy is 0, so
<em>W</em> = <em>K</em> = 1/2 <em>mv</em> ^2
Solve for <em>v</em> :
<em>v</em> = √(2<em>W</em>/<em>m</em>) = √(2 (101 J) / (2.0 m)) ≈ 10.0 m/s