So, here you have to look at the periodic table and see what the molar mass of each molecule composing the water compound

its two hydrogen atom plus an oxygen molecule, making it about 18g per mol.
That said, looking at the mass, we have to ask ourselves, if a mol of water contains 18g of mass, how many moles do we have in 0.5g of water?
We just do a cross multiplication:
Answer:

Step-by-step explanation:





Answer:
P ( 5 < X < 10 ) = 1
Step-by-step explanation:
Given:-
- Sample size n = 49
- The sample mean u = 8.0 mins
- The sample standard deviation s = 1.3 mins
Find:-
Find the probability that the average time waiting in line for these customers is between 5 and 10 minutes.
Solution:-
- We will assume that the random variable follows a normal distribution with, then its given that the sample also exhibits normality. The population distribution can be expressed as:
X ~ N ( u , s /√n )
Where
s /√n = 1.3 / √49 = 0.2143
- The required probability is P ( 5 < X < 10 ) minutes. The standardized values are:
P ( 5 < X < 10 ) = P ( (5 - 8) / 0.2143 < Z < (10-8) / 0.2143 )
= P ( -14.93 < Z < 8.4 )
- Using standard Z-table we have:
P ( 5 < X < 10 ) = P ( -14.93 < Z < 8.4 ) = 1
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
- Graphing
- Solving systems of equations
<u>Calculus</u>
Area - Integrals
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
Area of a Region Formula: ![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Bf%28x%29%20-%20g%28x%29%5D%7D%20%5C%2C%20dx)
Step-by-step explanation:
*Note:
<em>Remember that for the Area of a Region, it is top function minus bottom function.</em>
<u />
<u>Step 1: Define</u>
f(x) = x²
g(x) = x⁶
Bounded (Partitioned) by x-axis
<u>Step 2: Identify Bounds of Integration</u>
<em>Find where the functions intersect (x-values) to determine the bounds of integration.</em>
Simply graph the functions to see where the functions intersect (See Graph Attachment).
Interval: [-1, 1]
Lower bound: -1
Upper Bound: 1
<u>Step 3: Find Area of Region</u>
<em>Integration</em>
- Substitute in variables [Area of a Region Formula]:
![\displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5E1_%7B-1%7D%20%7B%5Bx%5E2%20-%20x%5E6%5D%7D%20%5C%2C%20dx)
- [Area] Rewrite [Integration Property - Subtraction]:

- [Area] Integrate [Integration Rule - Reverse Power Rule]:

- [Area] Evaluate [Integration Rule - FTC 1]:

- [Area] Subtract:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Area Under the Curve - Area of a Region (Integration)
Book: College Calculus 10e