Making a wire thicker has the same effect as making a road wider. It makes it easier for the electron traffic to flow. The resistance decreases, and the current (traffic) increases.
Answer:
v = 12.12 m/s
Explanation:
It is given that,
Radius of circle, r = 30 m
The coefficient friction between tires and road is 0.5,
The centripetal force is balanced by the force of friction such that,
v = 12.12 m/s
So, the maximum speed with which this car can round this curve is 12.12 m/s. Hence, this is the required solution.
Explanation:
Fluids exert both drag and lift forces on moving objects. Drag is the frictional force opposing motion. Lift is the force perpendicular to motion.
Some objects, like parachutes, are designed with large cross sectional areas to increase drag force. Usually though, objects are designed to minimize drag force. It's why cars, planes, and boats have sleek shapes.
Airplane wings have shapes called airfoils that generate lift. It's what makes them fly. The same shape is found in racecar spoilers. These spoilers use lift force to push down on the rear tires, increasing traction.
Given the following in the problem:
Distances : 2.0 m and 4.0 m
Sound waves : 1700 hz
Speed of sound : 340 m/s
Get the wavelength of the sound by using the formula:
Lambda = speed of sound/sound waves
Lambda = 340 m/s / 1700 hz
Lambda = 0.2
Get the path length difference to the point from the two speakers
L1 = 4mL2 = sqrt (42+ 22) m
Delta = 4.47
x = delta / lambda
If the outcome is nearly an integer, the waves strengthen at the point. If it is nearly an integer +0.5 the waves interfere destructively at the point. If it is neither the point is somewhat in in the middle.
Solving x = (4.47 – 4) / (0.2) = 2.35 an integer +0.5 so it’s a point of destructive interference.
Answer:
The average power of the engine of the sports car is 56.32 kW
Explanation:
Given;
mass of the sports car, m = 1100 kg
initial velocity of the sports car, u = 0 m/s
final velocity of the sports car, v = 32 m/s
time of motion, t = 10 s
The kinetic energy of the car is given by;
K.E = ¹/₂m(v² - u²)
K.E = ¹/₂mv²
K.E = ¹/₂ x 1100 x 32²
K.E = 563200 J
The average power of the engine of the sports car is given by;
Pavg = Energy / time
Pavg = 563200 / 10
Pavg = 56320 W
Pavg = 56.32 kW
Therefore, the average power of the engine of the sports car is 56.32 kW