Answer:
<h2>
<u>Joule</u><u>:</u></h2>
1 Joule of work is said to be done when a force of 1 Newton is applied to move/displace a body by 1 metre.
1 Joule= 1 Newton × 1 metre
1 Newton is the amount of force required to accelerate body of mass 1 kg by 1m/s²
So units of N is kgm/s²
So,
1 Joule
=1kgm/s² × m
=1kgm²/s²
<h2><u>Erg</u><u>:</u></h2>
1 erg is the amount of work done by a force of 1 dyne exerted for a distance of one centimetre.
1 Erg =1 Dyne × 1 cm
1 dyne is the force required to cause a mass of 1 gram to accelerate at a rate of 1cm/s².
1 Erg=1 gmcm/s² × cm
1 Erg=1 gmcm/s² × cm=1gmcm²/s²
this is what you need to convert 1gmcm²/s² to 1kgm²/s²
<h3><u>
what you need to know for conversion</u></h3>
[1gm=0.001kg
1cm²
=1cm ×1cm
=0.01 m × 0.01 m
=0.0001m²
second remains constant
]
So,
1gmcm²/s²
=0.001kg×0.0001m²/s²
=0.001kg×0.0001m²/s² =0.0000001kgm²/s²
Hence,
<h3>
<u>1 Erg</u><u>=</u><u>0.0000001</u><u> </u><u>Joule</u></h3><h3>
<u>1</u><u> </u><u>Joule</u><u>=</u><u>1</u><u>0</u><u>,</u><u>0</u><u>0</u><u>0</u><u>,</u><u>0</u><u>0</u><u>0</u><u> </u><u>Erg</u></h3>
<h2>⇒15 J=15×10000000 Erg</h2><h2> =150000000 Erg</h2><h2>
=1.5×10⁶ Erg</h2>
Well first a person makes a claim that a certain idea might make a great show. They get a control group together to test this theory and gather evidence that shows that people are interested. then the claimer uses reasoning to persuade potential directors and producers.
hope this helps you out!!:)))
Answer:
The acceleration of the refrigerator is 
Explanation:
The expression of the equation of the net force acting on the refrigerator is as follows;
F-f= ma
Here, F is the applied force, f is the force of friction, m is the mass and a is the acceleration.
It is given in the problem that you're having a hard time pushing a refrigerator having mass 355 kg across the kitchen floor. The force of your own push is 993 N. The force of friction opposing your own push is 973 N.
Put F= 993, f= 973 N and m = 355 kg in the above expression of the equation to calculate the acceleration of the refrigerator.
993 - 973 = (355)a
20 = 355 a

Therefore, the acceleration of the refrigerator is
.
The process of determining the value of the individual forces acting upon an object involve an application of Newton's second law (Fnet<span>=m. a) and an application of the meaning of the </span>net force<span>.</span>