Option D:
ΔCAN ≅ ΔWNA by SAS congruence rule.
Solution:
Given data:
m∠CNA = m∠WAN and CN = WA
To prove that ΔCAN ≅ ΔWNA:
In ΔCAN and ΔWNA,
CN = WA (given side)
∠CNA = ∠WAN (given angle)
NA = NA (reflexive side)
Therefore, ΔCAN ≅ ΔWNA by SAS congruence rule.
Hence option D is the correct answer.
We are asked to determine the value of a such that the function f(x) = ax^2 + 5 is fit for the point given (-1,2). In this case, we substitute 2 to y and -1 to x. The result is then 2 = a*(-1)^2 + 5 ; 2 = a + 5; a is then equal to -3
What is probability rolling a number greater than 4?
The only numbers there are is 5 and 6.
That means that there are 2 outcomes out of 6 total outcomes.
That would be 2/6.
Divide the the top and bottom by 2.
In simplest form it would be 1/3.
2/6=1/3
The answer is 1/3. The probability of throwing a number greater than 4 is 1/3.
Answer:
0.7486 = 74.86% observations would be less than 5.79
Step-by-step explanation:
I suppose there was a small typing mistake, so i am going to use the distribution as N (5.43,0.54)
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
The general format of the normal distribution is:
N(mean, standard deviation)
Which means that:

What proportion of observations would be less than 5.79?
This is the pvalue of Z when X = 5.79. So



has a pvalue of 0.7486
0.7486 = 74.86% observations would be less than 5.79