1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlexFokin [52]
1 year ago
5

Find all the complex roots. Write the answer in exponential form.

Mathematics
1 answer:
dezoksy [38]1 year ago
5 0

We have to calculate the fourth roots of this complex number:

z=9+9\sqrt[]{3}i

We start by writing this number in exponential form:

\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}

Then, the exponential form is:

z=18e^{\frac{\pi}{3}i}

The formula for the roots of a complex number can be written (in polar form) as:

z^{\frac{1}{n}}=r^{\frac{1}{n}}\cdot\lbrack\cos (\frac{\theta+2\pi k}{n})+i\cdot\sin (\frac{\theta+2\pi k}{n})\rbrack\text{ for }k=0,1,\ldots,n-1

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.

To simplify the calculations, we start by calculating the fourth root of r:

r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}

<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>

Then, we calculate the arguments of the trigonometric functions:

\frac{\theta+2\pi k}{n}=\frac{\frac{\pi}{2}+2\pi k}{4}=\frac{\pi}{8}+\frac{\pi}{2}k=\pi(\frac{1}{8}+\frac{k}{2})

We can now calculate for each value of k:

\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}

Answer:

The four roots in exponential form are

z0 = 18^(1/4)*e^(i*π/8)

z1 = 18^(1/4)*e^(i*5π/8)

z2 = 18^(1/4)*e^(i*9π/8)

z3 = 18^(1/4)*e^(i*13π/8)

You might be interested in
Can someone help me with this Geometry question ASAP, thanks!
slega [8]

We are given an isosceles triangle.

An isosceles triangle has corresponding angles of corresponding sides same.

<em>Therefore, other angle is also of (3x+7) degrees.</em>

(5x+13) and (3x+7) makes a linear pair.

Therefore,

(5x+13) + (3x+7)  = 180

5x +13 + 3x +7 = 180.

8x +20 = 180.

Subtracting 20 from both sides, we get

8x +20-20 = 180-20.

8x = 160

Dividing both sides by 8, we get

<h3>x = 20.</h3><h3>Therefore, correct option is 3rd option. </h3>
4 0
3 years ago
Please help!!!!!! ASAP!!!
Kitty [74]

Answer:

B. po ang answer sa palagay ko lang po

6 0
2 years ago
On a test, you earn 92% of the possible points by correctly answering 6 five-point questions and 8 two-point questions. How many
makvit [3.9K]
50 points I think cause 50•2=100 and 46•2=92 and 46/50 is equal to 92/100
4 0
3 years ago
What conjecture can be made
Alexxx [7]

Answer:

answer

Step-by-step explanation:

7 0
3 years ago
Use multiples to write two fractions equivalent to 7/9.
Nitella [24]

Answer:

\frac{14}{18} , \frac{21}{27}

Step-by-step explanation:

To create equivalent fractions multiply the numerator and denominator of the fraction by the same multiples.

Using a multiple of 2, then

\frac{7}{9} = \frac{7(2)}{9(2)} = \frac{14}{18}

Using a multiple of 3, then

\frac{7}{9} = \frac{7(3)}{9(3)} = \frac{21}{27}


4 0
3 years ago
Other questions:
  • How to turn 40% into a fraction
    15·2 answers
  • 5. Si P(x)=2x+4a , Q(x)=4x-2 y P[Q(4)]=60 , Calcular el valor de a
    14·1 answer
  • How do i solve 14x-2=8x+6 (11+x)
    14·1 answer
  • Practice worksheet : relations and functions
    8·2 answers
  • 1/6x-4+x+3/2x+1/3=22
    8·1 answer
  • Order the fractions from least to greatest -2/5, -7/4, -3/5, -8/3
    11·2 answers
  • If AK= 14, EK=17, BK= 7 , What is the length of DK? 12.7 8.5 7.0 3.5
    12·2 answers
  • the gasoline y (in fluid ounces) is proportional to the number of the fluid ounces of oil X used to run a 2 cycle motor. it take
    7·1 answer
  • A soda can is the shape of a cylinder. It has a diameter of 8 centimeters and a volume of 653.12 cm³. What is the lateral surfac
    9·1 answer
  • Work out 10.3 % of 853.93 km Give your answer rounded to 2 DP.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!