Answer:
Explanation:The final homogenous solution, after cooling it to 40°C, will contain 47 g of potassium sulfate disolved in 150 g of water, so you can calculate the amount disolved per 100 g of water in this way:
[47 g of solute / 150 g of water] * 100 g of g of water = 31.33 grams of solute in 100 g of water.
So, when you compare with the solutiblity, 15 g of solute / 100 g of water, you realize that the solution has more solute dissolved with means that it is supersaturated.
To make a saturated solution, 15 grams of potassium sulfate would dissolve in 100 g of water.
Read more on Brainly.com - brainly.com/question/5143785#readmore
Answer:
grams of solution = 551.98 g
Explanation:
Given data:
Percentage of solution = 32.9
Mass of solute = 181.6 g
Grams of solvent = ?
Solution:
Formula:
% = [grams of solute / grams of solution] × 100
Now we will put the values in formula.
32.9 = [ 181.6 g / grams of solution] × 100
grams of solution = 181.6 g × 100 / 32.9
grams of solution = 18160 g /32.9
grams of solution = 551.98 g
Answer:
For iron
Final temperature = 54,22°C
For copper
Final Temperature = 63.67 °C
Explanation
Hello,
You are using a torch to warm up a block of iron that has an initial temperature of 32°C.
The first you have to know is that the "heat capacity" could simply define as the heat required to go from an initial temperature to a final temperature.
So you need to use the heat capacity equation as follow in the paper.
The equation has to have all terms in the same units, so:
q = 12000 J
s = 0.450 J / g °C
m = 1200 g
Ti = 32 °C
Answer:
induced dipole-dipole forces or London Dispersion forces / van der Waals forces.
Explanation:
Hexane is non-polar in nature. This is due to :
The bond in the molecule is C-H, which is non-polar in nature because the carbon and the hydrogen having very similar electronegativity values.
Hexane is also symmetric.
The intermolecular force acting in the molecule of the hexane are induced the dipole-dipole forces or London Dispersion forces / van der Waals forces.
According to periodic trends, bismuth has the greatest atomic radius.