Answer:
The mass percentage of bromine in the original compound is 81,12%
Explanation:
<u>Step 1: Calculate moles AgBr</u>
moles AgBr = mass AgBr / molar mass AgBr
= 0.8878 g / 187.77 g/mol
= 0.00472812 moles AgBr
⇒
Since 1 mol AgBr contains 1 mol Br-
Then the amount of moles Br- in the original sample must also have been 0.00472812 moles
<u>Step 2:</u> Calculating mass Br-
mass Br- = molar mass Br x moles Br-
= 79.904 g/mol x 0.00472812 mol
= 0.377796 g Br-
⇒
There were 0.377796 g Br- in the original sample
<u>Step 3:</u> Calculating mass percentage Br-
⇒mass percentage = actual mass Br- / total mass x 100%
% mass Br = 0.377796 g / 0.4657 g x 100 %
= 81.12%
C because it is the highest frequency jk idk I’m just doin it for the sign up think
Answer:
6.0 L
Explanation:
For this question, we can use
P1×V1= P2 × V2
where
P1 (initial pressure)= 0.2 kPa
V1 (initial volume)= 15L
P2 (final pressure)= 0.5 kPa
V2(final volume)= ?
Since we are trying to find final volume, we can rearrange the equation to make V2 the subject.
V2= (P1 × V1)/ P2
V2= (0.2 ×15)/0.5
V2 =6 L
Answer:
11482 ppt of Li
Explanation:
The lithium is extracted by precipitation with B(C₆H₄)₄. That means moles of Lithium = Moles B(C₆H₄)₄. Now, 1 mole of B(C₆H₄)₄ produce the liberation of 4 moles of EDTA. The reaction of EDTA with Mg²⁺ is 1:1. Thus, mass of lithium ion is:
<em>Moles Mg²⁺:</em>
0.02964L * (0.05581mol / L) = 0.00165 moles Mg²⁺ = moles EDTA
<em>Moles B(C₆H₄)₄ = Moles Lithium:</em>
0.00165 moles EDTA * (1mol B(C₆H₄)₄ / 4mol EDTA) = 4.1355x10⁻⁴ mol B(C₆H₄)₄ = Moles Lithium
That means mass of lithium is (Molar mass Li=6.941g/mol):
4.1355x10⁻⁴ moles Lithium * (6.941g/mol) = 0.00287g. In μg:
0.00287g * (1000000μg / g) = 2870μg of Li
As ppt is μg of solute / Liter of solution, ppt of the solution is:
2870μg of Li / 0.250L =
<h3>11482 ppt of Li</h3>