Answer:
Step-by-step explanation:
11.
to find floor area:
= 8 x 8
= 64
= Floor is 64m.
to find carpet: 8 x 8 x 75%
= 64 x 75%
= 64 x 0.75
= 48
a. The dimensions of the carpet are probably 8 by 8.
b. The area of the floor not covered by carpet is 64, hence 8 x 8.
12.
A perfect square is a square that has demensions that is a number multiplied by itself.
Eight times eight fits the requirements, so this square is in fact perfect.
Have a lovely day!
Answer:
he has 472 points now.
Step-by-step explanation:
The standard form of the quadratic function f(x) = -3x^2 + 6x - 2 is f(x) = -3x^2 + 6x - 2
<h3>How to represent the
quadratic function in standard form?</h3>
The quadratic function is given as
f(x) = -3x^2 + 6x - 2
The standard form of a quadratic function is represented as:
f(x) = ax^2 + bx + c
When both equations are compared, we can see that the function f(x) = -3x^2 + 6x - 2 is already in standard form
Where
a = -3
b = 6
c = -2
Hence, the standard form of the quadratic function f(x) = -3x^2 + 6x - 2 is f(x) = -3x^2 + 6x - 2
Read more about quadratic function at
brainly.com/question/25841119
#SPJ1
Answer:
Step-by-step explanation:
a=10
Using the normal distribution, it is found that there is a 0.0436 = 4.36% probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean
and standard deviation
is given by:

- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
In this problem, the mean and the standard deviation are given, respectively, by:
.
The probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters is <u>one subtracted by the p-value of Z when X = 4</u>, hence:


Z = 1.71
Z = 1.71 has a p-value of 0.9564.
1 - 0.9564 = 0.0436.
0.0436 = 4.36% probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters.
More can be learned about the normal distribution at brainly.com/question/24663213
#SPJ1